Choice of metadata Статьи
Page 1, Results: 6
Report on unfulfilled requests: 0
1.

Подробнее
22.253.3
А 45
Алабян, А. М.
Особенности динамики вод в приливных устьях малых рек бассейна Белого моря [Текст] / А. М. Алабян, Е. Д. Панченко, А. А. Алексеева // Вестник Московского университета . - Москва, 2018. - №4. - С. 39-48. - (Серия 5, География)
ББК 22.253.3
Рубрики: Гидродинамика
Кл.слова (ненормированные):
мезопроливная устьевая область -- Каянда -- Тамица -- приливный цикл -- реверсивное течение -- отрицательная турбулентная вязкость -- гидравлическое сопротивление -- Белое море -- турбулентные потоки -- циклические колебания -- уровень воды -- устье реки
Аннотация: Использование новейшего гидрометрического и геодезического оборудования при выполнении полевых работ в мезоприливных устьях малых рек Кянда и Тамица, впадающих в Онежскую губу Белого моря, позволило исследовать особенности распространения приливных волн вверх по руслам рек и динамики реверсивных течений. Исследованы вариации гидравлических характеристик в течение приливного цикла в рамках одномерной схематизации речного потока. Отмечено парадоксальное гидродинамическое явление - отрицательная турбулентная вязкость, природа которого исследована в связи с механизмом диссипации энергии в турбулентных потоках на фоне циклических колебаний уровня воды и реверсивных течений в приливных устьях.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Панченко, Е.Д.
Алексеева, А.А.
А 45
Алабян, А. М.
Особенности динамики вод в приливных устьях малых рек бассейна Белого моря [Текст] / А. М. Алабян, Е. Д. Панченко, А. А. Алексеева // Вестник Московского университета . - Москва, 2018. - №4. - С. 39-48. - (Серия 5, География)
Рубрики: Гидродинамика
Кл.слова (ненормированные):
мезопроливная устьевая область -- Каянда -- Тамица -- приливный цикл -- реверсивное течение -- отрицательная турбулентная вязкость -- гидравлическое сопротивление -- Белое море -- турбулентные потоки -- циклические колебания -- уровень воды -- устье реки
Аннотация: Использование новейшего гидрометрического и геодезического оборудования при выполнении полевых работ в мезоприливных устьях малых рек Кянда и Тамица, впадающих в Онежскую губу Белого моря, позволило исследовать особенности распространения приливных волн вверх по руслам рек и динамики реверсивных течений. Исследованы вариации гидравлических характеристик в течение приливного цикла в рамках одномерной схематизации речного потока. Отмечено парадоксальное гидродинамическое явление - отрицательная турбулентная вязкость, природа которого исследована в связи с механизмом диссипации энергии в турбулентных потоках на фоне циклических колебаний уровня воды и реверсивных течений в приливных устьях.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Панченко, Е.Д.
Алексеева, А.А.
2.

Подробнее
31
G36
Genbach, A. A.
Research and calculation of high-forced capillary-porous heat exchanger [Текст] / A. A. Genbach, N. O. Jamanculova // Қазақстан Республикасының ұлттық ғылым академиясының баяндамалары=Доклады Национальной академии наук Республики Казахстан. - 2017. - №6. - С. 5-10.
ББК 31
Рубрики: Энергетика.
Кл.слова (ненормированные):
капиллярно- пористая система -- гидравлическое сопротивление -- система охлаждения -- кессон -- тепловой поток -- исследование -- расчет
Аннотация: Исследована, разработана и рассчитана капиллярно- пористая система охлаждения кессонов правильных агрегатов.
Держатели документа:
ЗКГУ им.М.Утемисова.
Доп.точки доступа:
Jamanculova, N.O.
G36
Genbach, A. A.
Research and calculation of high-forced capillary-porous heat exchanger [Текст] / A. A. Genbach, N. O. Jamanculova // Қазақстан Республикасының ұлттық ғылым академиясының баяндамалары=Доклады Национальной академии наук Республики Казахстан. - 2017. - №6. - С. 5-10.
Рубрики: Энергетика.
Кл.слова (ненормированные):
капиллярно- пористая система -- гидравлическое сопротивление -- система охлаждения -- кессон -- тепловой поток -- исследование -- расчет
Аннотация: Исследована, разработана и рассчитана капиллярно- пористая система охлаждения кессонов правильных агрегатов.
Держатели документа:
ЗКГУ им.М.Утемисова.
Доп.точки доступа:
Jamanculova, N.O.
3.

Подробнее
22.317
Г 34
Генбач , А. А.
Исследование и расчет высокофорсированного капиллярно-пористого теплообменника [Текст] / А. А. Генбач // Доклады НАН РК. Қазақстан Республикасының Ұлттық Академиясының Баяндамалары. - 2017. - №6. - С. . 5-10
ББК 22.317
Рубрики: Темодинамика и статистическая физика
Кл.слова (ненормированные):
капиллярно-пористая система -- гидравлическое сопротивление -- система охлаждения -- кессон -- тепловой поток
Аннотация: Исследована, разработана и рассчитана капиллярно-пористая система охлаждения кессонов плавильных агрегатов. Определен экспериментальный вид сетчатой пористой структуры (2*0.55)10-3 м. Увеличена в шесть раз теплопередающая способность системы охлаждения. Гидравлическое сопротивление при кипении воды будет в 40,4 раза меньше, чем в сетчатых тепловых трубах, и тем более для фитилей тепловых труб с волокнистыми, порошковыми и керамическими материалами. Кессон позволяет проводить охлаждение печей взрывобезопасно за счет содержания малого количества жидкости в пористой структуре. Представлена система кессонирования футеровки агрегата и схема охлаждения кессона капиллярнопористой системой. Гидравлическое сопротивление в капиллярно-пористой структуре, критериальное уравнение теплообмена с учетом избытка жидкости, определяющим скорость и недогрев потока, и теплоаккумулирующей способностью стенки получены нами в результате экспериментальных исследований.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Джаманкулова , Н.О.
Г 34
Генбач , А. А.
Исследование и расчет высокофорсированного капиллярно-пористого теплообменника [Текст] / А. А. Генбач // Доклады НАН РК. Қазақстан Республикасының Ұлттық Академиясының Баяндамалары. - 2017. - №6. - С. . 5-10
Рубрики: Темодинамика и статистическая физика
Кл.слова (ненормированные):
капиллярно-пористая система -- гидравлическое сопротивление -- система охлаждения -- кессон -- тепловой поток
Аннотация: Исследована, разработана и рассчитана капиллярно-пористая система охлаждения кессонов плавильных агрегатов. Определен экспериментальный вид сетчатой пористой структуры (2*0.55)10-3 м. Увеличена в шесть раз теплопередающая способность системы охлаждения. Гидравлическое сопротивление при кипении воды будет в 40,4 раза меньше, чем в сетчатых тепловых трубах, и тем более для фитилей тепловых труб с волокнистыми, порошковыми и керамическими материалами. Кессон позволяет проводить охлаждение печей взрывобезопасно за счет содержания малого количества жидкости в пористой структуре. Представлена система кессонирования футеровки агрегата и схема охлаждения кессона капиллярнопористой системой. Гидравлическое сопротивление в капиллярно-пористой структуре, критериальное уравнение теплообмена с учетом избытка жидкости, определяющим скорость и недогрев потока, и теплоаккумулирующей способностью стенки получены нами в результате экспериментальных исследований.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Джаманкулова , Н.О.
4.

Подробнее
24
Ж 88
Жумадуллаев, Д.К.
Единый подход к расчету гидравлического сопротивления трубчатого пучка смесительного и поверхностного теплообменников [Текст] / Д.К. Жумадуллаев, А.А. Ешжанов, А.А. Волненко, А.Э. Левданский // Известия национальной академии наук Республики Казахстан. - 2018. - №1. - С. 92-98. - (Серия Химии и технологии)
ББК 24
Рубрики: Химические наука
Кл.слова (ненормированные):
регулярная насадка -- вихри -- вертикальный шаг -- радиальный шаг -- синфазность -- степень взаимодействия вихрей -- гидравлическое сопротивление -- смесительные аппараты -- поверхностные аппараты
Аннотация: Тепломассообменные процессы и аппараты широко используются на предприятиях химиической, нефтеперерабатывающей, нефтехимической, газоперерабатывающей, металлургической, пищевой, химико-фармацевтической и энергетической отраслей Казахстана, а также в производствах агропромышленного комплекса, строительных материалов, в системах пылегазоулавливания. Существующие конструкции постоянно модернизируются и создаются новые. Известными методами интенсификации тепломассообмена являются режимный и конструктивный. Как показали исследования, наиболее перспективным методом конструктивной интенсификации является метод, использующий закономерности вихревого взаимодействия потоков. Благодаря научно обоснованному выбору расстояний между турбулизирующими элементами, зависящих от их формы и размеров, можно при постоянной скорости потоков изменить режимы взаимодействия фаз или усилить характеристики массо- и теплообмена за счет вихревого перемешивания в пределах одной фазы. Дан анализ известным данным по обтеканию элементов насадки, расположенных вдоль и поперек потока, и представлены расчетные зависимости для определения степени взаимодействия вихрей в вертикальном и радиальном направлениях. На основании закономерностей взаимодействия вихрей, образующихся при обтекании регулярно расположенных насадочных элементов, создан класс аппаратов с различным типом регулярной насадки. Установленные закономерности и расчетные зависимости были использованы при едином подходе к расчету гидравлического сопротивления смесительных тепломассообменных и поверхностных теплообменных аппаратов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Ешжанов, А.А.
Волненко, А.А.
Левданский , А.Э.
Ж 88
Жумадуллаев, Д.К.
Единый подход к расчету гидравлического сопротивления трубчатого пучка смесительного и поверхностного теплообменников [Текст] / Д.К. Жумадуллаев, А.А. Ешжанов, А.А. Волненко, А.Э. Левданский // Известия национальной академии наук Республики Казахстан. - 2018. - №1. - С. 92-98. - (Серия Химии и технологии)
Рубрики: Химические наука
Кл.слова (ненормированные):
регулярная насадка -- вихри -- вертикальный шаг -- радиальный шаг -- синфазность -- степень взаимодействия вихрей -- гидравлическое сопротивление -- смесительные аппараты -- поверхностные аппараты
Аннотация: Тепломассообменные процессы и аппараты широко используются на предприятиях химиической, нефтеперерабатывающей, нефтехимической, газоперерабатывающей, металлургической, пищевой, химико-фармацевтической и энергетической отраслей Казахстана, а также в производствах агропромышленного комплекса, строительных материалов, в системах пылегазоулавливания. Существующие конструкции постоянно модернизируются и создаются новые. Известными методами интенсификации тепломассообмена являются режимный и конструктивный. Как показали исследования, наиболее перспективным методом конструктивной интенсификации является метод, использующий закономерности вихревого взаимодействия потоков. Благодаря научно обоснованному выбору расстояний между турбулизирующими элементами, зависящих от их формы и размеров, можно при постоянной скорости потоков изменить режимы взаимодействия фаз или усилить характеристики массо- и теплообмена за счет вихревого перемешивания в пределах одной фазы. Дан анализ известным данным по обтеканию элементов насадки, расположенных вдоль и поперек потока, и представлены расчетные зависимости для определения степени взаимодействия вихрей в вертикальном и радиальном направлениях. На основании закономерностей взаимодействия вихрей, образующихся при обтекании регулярно расположенных насадочных элементов, создан класс аппаратов с различным типом регулярной насадки. Установленные закономерности и расчетные зависимости были использованы при едином подходе к расчету гидравлического сопротивления смесительных тепломассообменных и поверхностных теплообменных аппаратов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Ешжанов, А.А.
Волненко, А.А.
Левданский , А.Э.
5.

Подробнее
24
T76
Torskiy, A.O.
Hydrodynamics of a swirling flow in the cyclone-vortex apparatus [Текст] / A.O. Torskiy, A.A. Volnenko, А.А. Аbzhapbarov, A.E. Levdanskiy // Известия национальной академии наук Республики Казахстан. - 2018. - №2. - С. 18-25. - (Серия Химии и технологии)
ББК 24
Рубрики: Химические наука
Кл.слова (ненормированные):
циклон -- тангенциальный патрубок -- центробежная сила -- твердые частицы -- скорость газа -- коэффициент сопротивления -- гидравлическое сопротивление
Аннотация: Несмотря на широкое распространение аппаратов, использующих центробежную силу, протекающий в них процесс разделения неоднородных систем недостаточно изучен из-за сложности учета всех действующих на него параметров. В виду того, что запыленный газовый поток входит в циклон через патрубок, расположенный тангенциально к цилиндрической пылеосадительной камере, проходит по окружности вокруг выхлопной трубы и движется спирально вниз по стенке конуса и затем вверх, возникающая при этом центробежная сила воздействует на твердые частицы, заставляя их прижиматься к внутренней стенки корпуса, которые затем, под действием силы тяжести, сползают к выпускному патрубку. Для расчета циклонов предложено большое число моделей, описывающих процессы движения потока и разделения системы газ-твердое вещество. Многие исследователи принимают в качестве границы разделения воображаемую вертикальную цилиндрическую поверхность соответствующую радиусу внутренней трубы для выхода газа из аппарата. Другие для расчета гидравлического сопротивления использует среднюю цилиндрическую поверхность радиусом √ݎଵݎଶи высотой h, предполагая, что на ней происходит скачкообразное изменение скорости потока. По обе стороны этой поверхности преобладает потенциальное течение. В результате получены уравнения для расчета коэффициентов местных сопротивлений для входа и выхода в циклоне и общего сопротивления. Часть исследователей предлагает рассчитывать гидравлическое сопротивление циклона по скорости газа на входе. Нами для расчета гидравлического сопротивления циклона предложено уравнение, учитывающее сопротивление зоны входа, вихревой зоны и зоны выхода.Результаты расчета по предложенному уравнению хорошо коррелируются с данными других исследователей.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Volnenko, A.A.
Аbzhapbarov, А.А.
Levdanskiy, A.E.
T76
Torskiy, A.O.
Hydrodynamics of a swirling flow in the cyclone-vortex apparatus [Текст] / A.O. Torskiy, A.A. Volnenko, А.А. Аbzhapbarov, A.E. Levdanskiy // Известия национальной академии наук Республики Казахстан. - 2018. - №2. - С. 18-25. - (Серия Химии и технологии)
Рубрики: Химические наука
Кл.слова (ненормированные):
циклон -- тангенциальный патрубок -- центробежная сила -- твердые частицы -- скорость газа -- коэффициент сопротивления -- гидравлическое сопротивление
Аннотация: Несмотря на широкое распространение аппаратов, использующих центробежную силу, протекающий в них процесс разделения неоднородных систем недостаточно изучен из-за сложности учета всех действующих на него параметров. В виду того, что запыленный газовый поток входит в циклон через патрубок, расположенный тангенциально к цилиндрической пылеосадительной камере, проходит по окружности вокруг выхлопной трубы и движется спирально вниз по стенке конуса и затем вверх, возникающая при этом центробежная сила воздействует на твердые частицы, заставляя их прижиматься к внутренней стенки корпуса, которые затем, под действием силы тяжести, сползают к выпускному патрубку. Для расчета циклонов предложено большое число моделей, описывающих процессы движения потока и разделения системы газ-твердое вещество. Многие исследователи принимают в качестве границы разделения воображаемую вертикальную цилиндрическую поверхность соответствующую радиусу внутренней трубы для выхода газа из аппарата. Другие для расчета гидравлического сопротивления использует среднюю цилиндрическую поверхность радиусом √ݎଵݎଶи высотой h, предполагая, что на ней происходит скачкообразное изменение скорости потока. По обе стороны этой поверхности преобладает потенциальное течение. В результате получены уравнения для расчета коэффициентов местных сопротивлений для входа и выхода в циклоне и общего сопротивления. Часть исследователей предлагает рассчитывать гидравлическое сопротивление циклона по скорости газа на входе. Нами для расчета гидравлического сопротивления циклона предложено уравнение, учитывающее сопротивление зоны входа, вихревой зоны и зоны выхода.Результаты расчета по предложенному уравнению хорошо коррелируются с данными других исследователей.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Volnenko, A.A.
Аbzhapbarov, А.А.
Levdanskiy, A.E.
6.

Подробнее
24
S90
Study of the influence of operating conditions on the hydrodynamic regularities of a regular tubular packing [Текст] / D. K. Zhumadullayev , A. N. Issayeva , B. N. Korganbayev , А. А. Volnenko // Доклады национальной академии наук Республики Казахстан. - 2021. - №5. - Р. 151-157
ББК 24
Рубрики: Химия
Кл.слова (ненормированные):
регулярная трубчатая насадка -- трубы -- скорость газа -- плотность орошения -- гидравлическое сопротивление -- количество удерживаемой жидкости -- синфазный режим
Аннотация: Практически во всех отраслях промышленности для проведения процессов тепломассообмена и пылеулавливания используются газоочистные аппараты. В настоящее время разработано большое количество аппаратов, применяемых для проведения процессов абсорбции, ректификации, экстракции, пылеулавливания, охлаждения газов и жидкостей. Они различаются как по конструкции (тарельчатые, насадочные, специальные), так и по режимам работы (противоток, прямоток, с перекрестным движением фаз). В последние годы находят применение аппараты с регулярной подвижной насадкой (РПН) различных геометрических форм, разработанные казахстанскими учеными. Они значительно превосходят широкоприменяемые конструкции тепломассообменных аппаратов (тарельчатых и насадочных) вследствие невысокой энергоемкости при высокой эффективности проводимых процессов, за счет того, что в них заложен принцип создания синфазного режима взаимодействующих фаз. Нами для проведения процессов газоочистки и контактного теплообмена разработана конструкция аппарата с трубчатой насадкой регулярной структуры. Ее особенностью является то, что в ней возможно регулирование процесса теплообмена непосредственно в зоне контакта при подаче теплоносителя в трубы. При этом контакт происходит через стенки труб и движение теплоносителя в трубах не влияет на структуру газожидкостного слоя в аппарате. Для проведения исследований гидродинамических параметров разработана технологическая схема установки с аппаратом с трубчатой насадкой и подобраны методики. Проведенные исследования гидравлического сопротивления при движении теплоносителя в трубах показали устойчивый рост с увеличением скорости движения теплоносителя. Это связано с потерями давления на трение и в местных сопротивлениях. Результаты исследований гидродинамических параметров при внешнем обтекании трубчатого пучка показали, что с увеличением скорости газа и количества подаваемой на орошение жидкости гидравлическое сопротивление и количество удерживаемой жидкости растут. Рост гидравлического сопротивления и количества удерживаемой жидкости при увеличении скорости газа обусловлен ростом динамического напора. Рост исследуемых параметров с увеличением плотности орошения связан с тем, что растет количество участвующей в процессе жидкости.
Держатели документа:
ЗКУ
Доп.точки доступа:
Zhumadullayev , D. K.
Issayeva , A. N.
Korganbayev , B. N.
Volnenko , А.А.
S90
Study of the influence of operating conditions on the hydrodynamic regularities of a regular tubular packing [Текст] / D. K. Zhumadullayev , A. N. Issayeva , B. N. Korganbayev , А. А. Volnenko // Доклады национальной академии наук Республики Казахстан. - 2021. - №5. - Р. 151-157
Рубрики: Химия
Кл.слова (ненормированные):
регулярная трубчатая насадка -- трубы -- скорость газа -- плотность орошения -- гидравлическое сопротивление -- количество удерживаемой жидкости -- синфазный режим
Аннотация: Практически во всех отраслях промышленности для проведения процессов тепломассообмена и пылеулавливания используются газоочистные аппараты. В настоящее время разработано большое количество аппаратов, применяемых для проведения процессов абсорбции, ректификации, экстракции, пылеулавливания, охлаждения газов и жидкостей. Они различаются как по конструкции (тарельчатые, насадочные, специальные), так и по режимам работы (противоток, прямоток, с перекрестным движением фаз). В последние годы находят применение аппараты с регулярной подвижной насадкой (РПН) различных геометрических форм, разработанные казахстанскими учеными. Они значительно превосходят широкоприменяемые конструкции тепломассообменных аппаратов (тарельчатых и насадочных) вследствие невысокой энергоемкости при высокой эффективности проводимых процессов, за счет того, что в них заложен принцип создания синфазного режима взаимодействующих фаз. Нами для проведения процессов газоочистки и контактного теплообмена разработана конструкция аппарата с трубчатой насадкой регулярной структуры. Ее особенностью является то, что в ней возможно регулирование процесса теплообмена непосредственно в зоне контакта при подаче теплоносителя в трубы. При этом контакт происходит через стенки труб и движение теплоносителя в трубах не влияет на структуру газожидкостного слоя в аппарате. Для проведения исследований гидродинамических параметров разработана технологическая схема установки с аппаратом с трубчатой насадкой и подобраны методики. Проведенные исследования гидравлического сопротивления при движении теплоносителя в трубах показали устойчивый рост с увеличением скорости движения теплоносителя. Это связано с потерями давления на трение и в местных сопротивлениях. Результаты исследований гидродинамических параметров при внешнем обтекании трубчатого пучка показали, что с увеличением скорости газа и количества подаваемой на орошение жидкости гидравлическое сопротивление и количество удерживаемой жидкости растут. Рост гидравлического сопротивления и количества удерживаемой жидкости при увеличении скорости газа обусловлен ростом динамического напора. Рост исследуемых параметров с увеличением плотности орошения связан с тем, что растет количество участвующей в процессе жидкости.
Держатели документа:
ЗКУ
Доп.точки доступа:
Zhumadullayev , D. K.
Issayeva , A. N.
Korganbayev , B. N.
Volnenko , А.А.
Page 1, Results: 6