Электронный каталог


 

Choice of metadata Статьи

Page 1, Results: 1

Report on unfulfilled requests: 0

22
А 37

Айсагалиев, С. А
    Исследование глобальной асимптотической устойчивости многомерных фазовых систем [Текст] / С.А Айсагалиева // Хабаршы Әл-Фараби атындағы қазақ ұлттық университеті=Вестник Казахский национальный университет имени Аль-Фараби =Al-Farabi kazakh national university. Journal of Mathematics, Mechanics. - Алматы, 2018. - №3. - P. 24-42. - (Математика, механика, информатика сериясы=Серия математика, механика, информатика. Journal of Mathematics, Mechanics, Computer Science.)
ББК 22

Рубрики: Физико-математические науки

Кл.слова (ненормированные):
Асимптотические свойства -- ограниченность решений -- глобальная асимптотическая устойчивость -- несобственные интегралы -- Айсагалиев.С.А -- Хабаршы,Вестник
Аннотация: Создана общая теория глобальной асимптотической устойчивости многомерных динамических систем с цилиндрическим фазовым пространством со счетным положением равновесия. Установлена ограниченность решений многомерных фазовых систем и их производных. Найдены условия при выполнений которых решение и ее производная обладают асимптотическими свойствами. Получены условия глобальной асимптотической устойчивости многомерных фазовых систем с равными нулю в периоде значениями интегралов от компонентов периодических нелинейностей. Получены условия глобальной асимптотической устойчивости фазовых систем с не равными нулю в периоде значениями интегралов от составляющих нелинейных периодических функций. Исследованы асимптотические свойства решений динамических систем со счетным положением равновесия в общем случае, когда часть компонентов нелинейных периодических функции обладают значениями интегралов в периоде равными нулю, а для других компонентов значения интегралов в периоде не равными нулю. Отличительной особенностью предлагаемого метода исследования многомерных фазовых систем от известных методов состоит в том, что он применим для систем любого порядка с любым числом нелинейных периодических функции, и не привлекаются для исследования периодические функции Ляпунова и частотные теоремы. Примечательно то, что предлагаемые условия глобальной асимптотической устойчивости легко проверяемые по сравнению с частотными условиями и условиями полученные с помощью периодических функции Ляпунова. Ключевые слова: Асимптотические свойства, ограниченность решений, глобальная асимптотическая устойчивость, несобственные интегралы.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Айсагалиева.С.С

Айсагалиев, С.А Исследование глобальной асимптотической устойчивости многомерных фазовых систем [Текст] / С.А Айсагалиева // Хабаршы Әл-Фараби атындағы қазақ ұлттық университеті=Вестник Казахский национальный университет имени Аль-Фараби =Al-Farabi kazakh national university. Journal of Mathematics, Mechanics. - Алматы, 2018. - №3.- P.24-42

1.

Айсагалиев, С.А Исследование глобальной асимптотической устойчивости многомерных фазовых систем [Текст] / С.А Айсагалиева // Хабаршы Әл-Фараби атындағы қазақ ұлттық университеті=Вестник Казахский национальный университет имени Аль-Фараби =Al-Farabi kazakh national university. Journal of Mathematics, Mechanics. - Алматы, 2018. - №3.- P.24-42


22
А 37

Айсагалиев, С. А
    Исследование глобальной асимптотической устойчивости многомерных фазовых систем [Текст] / С.А Айсагалиева // Хабаршы Әл-Фараби атындағы қазақ ұлттық университеті=Вестник Казахский национальный университет имени Аль-Фараби =Al-Farabi kazakh national university. Journal of Mathematics, Mechanics. - Алматы, 2018. - №3. - P. 24-42. - (Математика, механика, информатика сериясы=Серия математика, механика, информатика. Journal of Mathematics, Mechanics, Computer Science.)
ББК 22

Рубрики: Физико-математические науки

Кл.слова (ненормированные):
Асимптотические свойства -- ограниченность решений -- глобальная асимптотическая устойчивость -- несобственные интегралы -- Айсагалиев.С.А -- Хабаршы,Вестник
Аннотация: Создана общая теория глобальной асимптотической устойчивости многомерных динамических систем с цилиндрическим фазовым пространством со счетным положением равновесия. Установлена ограниченность решений многомерных фазовых систем и их производных. Найдены условия при выполнений которых решение и ее производная обладают асимптотическими свойствами. Получены условия глобальной асимптотической устойчивости многомерных фазовых систем с равными нулю в периоде значениями интегралов от компонентов периодических нелинейностей. Получены условия глобальной асимптотической устойчивости фазовых систем с не равными нулю в периоде значениями интегралов от составляющих нелинейных периодических функций. Исследованы асимптотические свойства решений динамических систем со счетным положением равновесия в общем случае, когда часть компонентов нелинейных периодических функции обладают значениями интегралов в периоде равными нулю, а для других компонентов значения интегралов в периоде не равными нулю. Отличительной особенностью предлагаемого метода исследования многомерных фазовых систем от известных методов состоит в том, что он применим для систем любого порядка с любым числом нелинейных периодических функции, и не привлекаются для исследования периодические функции Ляпунова и частотные теоремы. Примечательно то, что предлагаемые условия глобальной асимптотической устойчивости легко проверяемые по сравнению с частотными условиями и условиями полученные с помощью периодических функции Ляпунова. Ключевые слова: Асимптотические свойства, ограниченность решений, глобальная асимптотическая устойчивость, несобственные интегралы.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Айсагалиева.С.С

Page 1, Results: 1

 

All acquisitions for 
Or select a month