Электронный каталог


 

Choice of metadata Статьи

Page 1, Results: 3

Report on unfulfilled requests: 0

35.119
Л 61

Липин , А. А.
    Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 98-104
ББК 35.119

Рубрики: Другие процессы химической технологии

Кл.слова (ненормированные):
моделирование -- капсулирование -- тепло- и массоперенос -- степень покрытия -- псевдоожиженный слой -- химия -- химическая технология -- гранула -- фонтанирующий слой
Аннотация: Капсулирование гранул в полимерные оболочки проводится с целью изолирования поверхности частиц от негативного воздействия факторов окружающей среды и регулирования скорости выделения активного компонента. В данной работе капсулирование осуществляется путем распыливания водной дисперсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную плёнку. Удаление растворителя путем сушки приводит к отверждению плёнки. Существующие методы расчета процесса капсулирования в аппаратах с псевдоожиженным слоем частиц не учитывают влияния закономерностей формирования капсулы на протекание тепло-массообменного процесса удаления растворителя из пленки капсулообразующего вещества. Совместное рассмотрение этих процессов позволяет более достоверно прогнозировать требуемое время пребывания капсулируемого материала в аппарате. Разработана математическая модель, позволяющая прогнозировать изменение степени покрытия, влагосодержания капсулируемых частиц, изменения их температуры во времени и требуемое время пребывания в аппарате. Для проверки адекватности разработанной математической модели выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента измерялась температура в псевдоожиженном слое частиц и температура воздуха в сепарационном пространстве над слоем. Измерения проводились во времени процесса прогрева как орошаемого, так и не орошаемого псевдоожиженного слоя частиц. Экспериментально подтверждено, что температура слоя частиц напрямую зависит от соотношения интенсивностей подвода теплоты конвекцией от псевдоожижающего агента и отвода теплоты с испаренной влагой. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что учёт изменения поверхности испарения из-за увеличения степени покрытия частиц в процессе капсулирования позволяет более достоверно прогнозировать изменение параметров частиц и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин , В.О.
Липин , А.Г.

Липин , А.А. Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.98-104

1.

Липин , А.А. Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.98-104


35.119
Л 61

Липин , А. А.
    Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 98-104
ББК 35.119

Рубрики: Другие процессы химической технологии

Кл.слова (ненормированные):
моделирование -- капсулирование -- тепло- и массоперенос -- степень покрытия -- псевдоожиженный слой -- химия -- химическая технология -- гранула -- фонтанирующий слой
Аннотация: Капсулирование гранул в полимерные оболочки проводится с целью изолирования поверхности частиц от негативного воздействия факторов окружающей среды и регулирования скорости выделения активного компонента. В данной работе капсулирование осуществляется путем распыливания водной дисперсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную плёнку. Удаление растворителя путем сушки приводит к отверждению плёнки. Существующие методы расчета процесса капсулирования в аппаратах с псевдоожиженным слоем частиц не учитывают влияния закономерностей формирования капсулы на протекание тепло-массообменного процесса удаления растворителя из пленки капсулообразующего вещества. Совместное рассмотрение этих процессов позволяет более достоверно прогнозировать требуемое время пребывания капсулируемого материала в аппарате. Разработана математическая модель, позволяющая прогнозировать изменение степени покрытия, влагосодержания капсулируемых частиц, изменения их температуры во времени и требуемое время пребывания в аппарате. Для проверки адекватности разработанной математической модели выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента измерялась температура в псевдоожиженном слое частиц и температура воздуха в сепарационном пространстве над слоем. Измерения проводились во времени процесса прогрева как орошаемого, так и не орошаемого псевдоожиженного слоя частиц. Экспериментально подтверждено, что температура слоя частиц напрямую зависит от соотношения интенсивностей подвода теплоты конвекцией от псевдоожижающего агента и отвода теплоты с испаренной влагой. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что учёт изменения поверхности испарения из-за увеличения степени покрытия частиц в процессе капсулирования позволяет более достоверно прогнозировать изменение параметров частиц и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин , В.О.
Липин , А.Г.

24
Л 61

Липин, А.Г.
    Оценка степени покрытия при капсулировании зернистых материалов впсевдоожиженном слое [Текст] / А.Г. Липин, В.О. Небукин, А.А. Липин // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(5). - С. 84-90
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
моделирование -- капсулирование -- степень покрытия -- псевдоожиженный слой -- зернистые материалы -- химия
Аннотация: Путем капсулирования зернистых материалов можно устранять их слеживаемость, обеспечивать замедленное выделение активного вещества. В данной работе капсулирование осуществляется путем распыливания эмульсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную пленку. Удаление растворителя путем сушки приводит к отверждению пленки. Качество проведения процесса капсулирования оценивалось по величине степени покрытия, которая равна доле общей поверхности частиц, покрытой защитной оболочкой. При нанесении тонких полимерных оболочек очень важно определение режимных параметров процесса, обеспечивающих сплошность защитного покрытия. В статье представлена математическая модель, позволяющая прогнозировать степень покрытия частиц в аппарате кипящего слоя. Предполагается, что скорость роста степени покрытия пропорциональна доле непокрытой поверхности и расходу пленкообразующего вещества. Для идентификации параметров разработанной математической модели и проверки ее адекватности выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента из аппарата с интервалом 1 мин отбирались образцы частиц для определения их степени покрытия. Методика определения степени покрытия основана на сравнительном анализе кривых растворения исходных и обработанных гранул. Приведены графические зависимости, характеризующие эволюцию степени покрытия гранул во времени при различных расходах пленкообразующего вещества. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что предложенная математическая модель формирования защитного покрытия на частицах в аппарате кипящего слоя позволяет достоверно прогнозировать степень покрытия частиц в процессе капсулирования и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин, В.О.
Липин, А.А.

Липин, А.Г. Оценка степени покрытия при капсулировании зернистых материалов впсевдоожиженном слое [Текст] / А.Г. Липин, В.О. Небукин, А.А. Липин // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(5).- С.84-90

2.

Липин, А.Г. Оценка степени покрытия при капсулировании зернистых материалов впсевдоожиженном слое [Текст] / А.Г. Липин, В.О. Небукин, А.А. Липин // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(5).- С.84-90


24
Л 61

Липин, А.Г.
    Оценка степени покрытия при капсулировании зернистых материалов впсевдоожиженном слое [Текст] / А.Г. Липин, В.О. Небукин, А.А. Липин // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(5). - С. 84-90
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
моделирование -- капсулирование -- степень покрытия -- псевдоожиженный слой -- зернистые материалы -- химия
Аннотация: Путем капсулирования зернистых материалов можно устранять их слеживаемость, обеспечивать замедленное выделение активного вещества. В данной работе капсулирование осуществляется путем распыливания эмульсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную пленку. Удаление растворителя путем сушки приводит к отверждению пленки. Качество проведения процесса капсулирования оценивалось по величине степени покрытия, которая равна доле общей поверхности частиц, покрытой защитной оболочкой. При нанесении тонких полимерных оболочек очень важно определение режимных параметров процесса, обеспечивающих сплошность защитного покрытия. В статье представлена математическая модель, позволяющая прогнозировать степень покрытия частиц в аппарате кипящего слоя. Предполагается, что скорость роста степени покрытия пропорциональна доле непокрытой поверхности и расходу пленкообразующего вещества. Для идентификации параметров разработанной математической модели и проверки ее адекватности выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента из аппарата с интервалом 1 мин отбирались образцы частиц для определения их степени покрытия. Методика определения степени покрытия основана на сравнительном анализе кривых растворения исходных и обработанных гранул. Приведены графические зависимости, характеризующие эволюцию степени покрытия гранул во времени при различных расходах пленкообразующего вещества. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что предложенная математическая модель формирования защитного покрытия на частицах в аппарате кипящего слоя позволяет достоверно прогнозировать степень покрытия частиц в процессе капсулирования и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин, В.О.
Липин, А.А.

35
Л 61

Липин, А. Г.
    Распределение частиц по массам покрытия при периодическом процессе капсулирования в псевдоожиженном слое. [Текст] / А. Г. Липин, А. А. Липин // Известия высших учебных заведений . - 2021. - Т.64. Вып.12. - С. 84-90
ББК 35

Рубрики: Химическая технология

Кл.слова (ненормированные):
моделирование -- капсулирование -- равномерность покрытия -- псевдоожиженный слой
Аннотация: Статья посвящена математическому моделированию процесса капсулирования дисперсных материалов. Одним из главных показателей качества капсулированного продукта является равномерность распределения материала покрытия между капсулируемыми частицами. Показано, что при нанесении толстых оболочек для характеристики равномерности распределения пленкообразующего вещества по частицам целесообразно применять функцию распределения частиц по массам покрытия. В статье предложена математическая модель периодического процесса капсулирования в псевдоожиженном слое, позволяющая прогнозировать функцию распределения частиц по массам покрытия. Модель основана на уравнениях баланса частиц, составленных для двух зон аппарата: сушки и орошения.
Держатели документа:
ЗКУ
Доп.точки доступа:
Липин, А.А.

Липин, А.Г. Распределение частиц по массам покрытия при периодическом процессе капсулирования в псевдоожиженном слое. [Текст] / А. Г. Липин, А. А. Липин // Известия высших учебных заведений . - 2021. Т.64. Вып.12.- С.84-90

3.

Липин, А.Г. Распределение частиц по массам покрытия при периодическом процессе капсулирования в псевдоожиженном слое. [Текст] / А. Г. Липин, А. А. Липин // Известия высших учебных заведений . - 2021. Т.64. Вып.12.- С.84-90


35
Л 61

Липин, А. Г.
    Распределение частиц по массам покрытия при периодическом процессе капсулирования в псевдоожиженном слое. [Текст] / А. Г. Липин, А. А. Липин // Известия высших учебных заведений . - 2021. - Т.64. Вып.12. - С. 84-90
ББК 35

Рубрики: Химическая технология

Кл.слова (ненормированные):
моделирование -- капсулирование -- равномерность покрытия -- псевдоожиженный слой
Аннотация: Статья посвящена математическому моделированию процесса капсулирования дисперсных материалов. Одним из главных показателей качества капсулированного продукта является равномерность распределения материала покрытия между капсулируемыми частицами. Показано, что при нанесении толстых оболочек для характеристики равномерности распределения пленкообразующего вещества по частицам целесообразно применять функцию распределения частиц по массам покрытия. В статье предложена математическая модель периодического процесса капсулирования в псевдоожиженном слое, позволяющая прогнозировать функцию распределения частиц по массам покрытия. Модель основана на уравнениях баланса частиц, составленных для двух зон аппарата: сушки и орошения.
Держатели документа:
ЗКУ
Доп.точки доступа:
Липин, А.А.

Page 1, Results: 3

 

All acquisitions for 
Or select a month