Электронный каталог


 

Choice of metadata Статьи

Page 1, Results: 2

Report on unfulfilled requests: 0

22.1
О 11


    On the square root of the operator of Sturm-Liouville fourth-order [Текст] = О квадратном корне из оператора Штурма-Лиувилля четвёртого порядка / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 85-96
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
гипотеза Като -- диссипативный оператор -- квадратный корень из оператора -- теорема Путнама -- отклоняющиеся аргумент -- дробные степени оператора -- обратная задача -- спектр -- унитарный оператор -- самосопряженный оператор -- положительный оператор -- функционально-дифференциальный оператор -- спектральная теория -- математика
Аннотация: В настоящей работе найден корень из положительного оператора Штурма - Лиувилля четвертого порядка, являющегося композицией обратимого оператора Штурма - Лиувилля и его сопряженного. Найденный корень не обладает свойством положительности, но является самосопряженным оператором в существенном. В качестве наводящей идеи использована одна теорема Путнама алгебраического характера. Можно надеяться, что результаты работы найдут приложения в спектральной теории операторов и теоретической физике.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayev, А.Sh.
Imanbayeva, A.B.
Beisebayeva, A.Zh.
Shaldanbayeva, А.А.

On the square root of the operator of Sturm-Liouville fourth-order [Текст] / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3.- С.85-96

1.

On the square root of the operator of Sturm-Liouville fourth-order [Текст] / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3.- С.85-96


22.1
О 11


    On the square root of the operator of Sturm-Liouville fourth-order [Текст] = О квадратном корне из оператора Штурма-Лиувилля четвёртого порядка / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 85-96
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
гипотеза Като -- диссипативный оператор -- квадратный корень из оператора -- теорема Путнама -- отклоняющиеся аргумент -- дробные степени оператора -- обратная задача -- спектр -- унитарный оператор -- самосопряженный оператор -- положительный оператор -- функционально-дифференциальный оператор -- спектральная теория -- математика
Аннотация: В настоящей работе найден корень из положительного оператора Штурма - Лиувилля четвертого порядка, являющегося композицией обратимого оператора Штурма - Лиувилля и его сопряженного. Найденный корень не обладает свойством положительности, но является самосопряженным оператором в существенном. В качестве наводящей идеи использована одна теорема Путнама алгебраического характера. Можно надеяться, что результаты работы найдут приложения в спектральной теории операторов и теоретической физике.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayev, А.Sh.
Imanbayeva, A.B.
Beisebayeva, A.Zh.
Shaldanbayeva, А.А.

22.1
Ш 18

Shaldanbayev, А.Sh.
    On square root of Sturm-Liuville operator [Текст] = О квадратном корне из оператора Штурма - Лиувилля / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 97–113
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
оператор Штурма - Лиувилля -- квадратный корень из оператора -- функциональнодифференциальный оператор -- уравнения с отклоняющимся аргументом -- гипотеза Като -- пример Макинтоша -- оператор Гурса -- обратная задача -- спектр -- собственные значения -- собственные функции -- унитарный оператор -- оператор подобия -- математика
Аннотация: В данной работе найден корень квадратный из оператора Штурма - Лиувилля и показан, что этот корень является функционально- дифференциальным оператором первого порядка. Найден вид соответствующей краевой задачи этого функционально - дифференциального уравнения. В качестве наводящей идеи использована одна теорема Путнама. Краевые условия оператора Штурма - Лиувилля имеют весьма специальный вид, и они продиктованы методом исследования. Найденный унитарный оператор обобщает известного оператора импульса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayevа, А.А.
Shaldanbay, B.А.

Shaldanbayev, А.Sh. On square root of Sturm-Liuville operator [Текст] / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3.- С.97–113

2.

Shaldanbayev, А.Sh. On square root of Sturm-Liuville operator [Текст] / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3.- С.97–113


22.1
Ш 18

Shaldanbayev, А.Sh.
    On square root of Sturm-Liuville operator [Текст] = О квадратном корне из оператора Штурма - Лиувилля / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 97–113
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
оператор Штурма - Лиувилля -- квадратный корень из оператора -- функциональнодифференциальный оператор -- уравнения с отклоняющимся аргументом -- гипотеза Като -- пример Макинтоша -- оператор Гурса -- обратная задача -- спектр -- собственные значения -- собственные функции -- унитарный оператор -- оператор подобия -- математика
Аннотация: В данной работе найден корень квадратный из оператора Штурма - Лиувилля и показан, что этот корень является функционально- дифференциальным оператором первого порядка. Найден вид соответствующей краевой задачи этого функционально - дифференциального уравнения. В качестве наводящей идеи использована одна теорема Путнама. Краевые условия оператора Штурма - Лиувилля имеют весьма специальный вид, и они продиктованы методом исследования. Найденный унитарный оператор обобщает известного оператора импульса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayevа, А.А.
Shaldanbay, B.А.

Page 1, Results: 2

 

All acquisitions for 
Or select a month