Электронный каталог


 

Choice of metadata Статьи

Page 1, Results: 1

Report on unfulfilled requests: 0

32.81
A13

Abdiakhmetova , Z. M
    Data processing in electrocardioqraphs by wavelet transformation for early forecasting of parossysmal arthritis [Текст] / Z.M Abdiakhmetova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КазНУ им Аль - Фараби. - Алматы, 2018. - №1(97). - Р. . 111-119. - (Математика, механика, информатика сериясы = Серия математика, механика, информатика)
ББК 32.81

Рубрики: Информатика

Кл.слова (ненормированные):
электрокардиограмма -- вейвлетное преобразование -- пароксизмальная мерцательная аритмия
Аннотация: Являются основной причиной смертности в разных странах. Качество сигнала ЭКГ можетбыть затронут и ухудшен различными источниками, такими как состояние пациента, базовоеблуждание, контакт электродов ЭКГ и другие. Кроме того, если ЭКГ контролируетсявизуально, вероятность получения человеческой ошибки высок, каждый 10-результатинтерпретируется с ошибкой (Brikena Xhaja, 2015: 305-312). А также по многим ЭКГ снимкампросто не возможно провести визуальный анализ частотных данных сигнала. Морфологиянизкоамплитудных высокочастотных сигналов, так называемых Р волн, скрывает ценнуюинформацию для раннего доклинического прогнозирования болезней. То есть необходимостьпоиска новых методов ранней доклинической диагностики все еще актуальна. Посколькубольшая часть клинически полезной информации в ЭКГ обнаруживается в интервалах и амплитудах, определяемых ее значимыми точками (характерные пики и границыволн), разработка точных и надежных методов автоматического разграничения ЭКГявляется предметом серьезной важности, особенно для анализа длинных записей(Juan Pablo Martinez, 2014: 570-581). Проблемы извлечения из электрофизиологическогосигнала информации, которую невозможно получить при визуальном анализе записи, атакже проблемы автоматизации традиционных алгоритмов врачебного анализа являютсяактуальными в связи с недостатком исследований в данной области. Целью исследованияявляется поиск новых областей применения метода вейвлетного преобразования вобработке сигналов. Получившее широкое распространение в 2000 годах в исследованиисвойств сигналов вейвлетное преобразование позволяет с помощью аппроксимирующихи детализирующих коэффициентов «разглядеть» скрытые частотно-временные данныесигнала. Полученные результаты показывают, что предлагаемый алгоритм обеспечиваетреальную эффективность в обработке первичных сигналов для задачи выделениядетализирующих коэффициентов ЭКГ сигнала. Наше исследование показывает, что вейвлет-анализ Морлета интервалов Р, который применять легко и недорого, может достовернопредсказать частоту симптоматических эпизодов пароксизмальной мерцательной аритмииу пациентов без клинически и эхокардиографически выраженной болезни сердца. Вейвлетанализ может способствовать нашему пониманию электрофизиологических механизмов,лежащих в основе генерации и рецидивов пароксизмальной мерцательной аритмии, иможет позволить идентифицировать пациентов с высоким риском увеличения рецидивовпароксизмальной мерцательной аритмии, тем самым создавая перспективу раннегоприменения неинвазивных и инвазивных терапевтических стратегий для предотвращениябудущих событий пароксизмальной мерцательной аритмии. Литература
Держатели документа:
ЗКГУ
Доп.точки доступа:
Nurmakhanova, Zh.M

Abdiakhmetova , Z.M Data processing in electrocardioqraphs by wavelet transformation for early forecasting of parossysmal arthritis [Текст] / Z.M Abdiakhmetova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КазНУ им Аль - Фараби. - Алматы, 2018. - №1(97).- Р. 111-119

1.

Abdiakhmetova , Z.M Data processing in electrocardioqraphs by wavelet transformation for early forecasting of parossysmal arthritis [Текст] / Z.M Abdiakhmetova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КазНУ им Аль - Фараби. - Алматы, 2018. - №1(97).- Р. 111-119


32.81
A13

Abdiakhmetova , Z. M
    Data processing in electrocardioqraphs by wavelet transformation for early forecasting of parossysmal arthritis [Текст] / Z.M Abdiakhmetova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КазНУ им Аль - Фараби. - Алматы, 2018. - №1(97). - Р. . 111-119. - (Математика, механика, информатика сериясы = Серия математика, механика, информатика)
ББК 32.81

Рубрики: Информатика

Кл.слова (ненормированные):
электрокардиограмма -- вейвлетное преобразование -- пароксизмальная мерцательная аритмия
Аннотация: Являются основной причиной смертности в разных странах. Качество сигнала ЭКГ можетбыть затронут и ухудшен различными источниками, такими как состояние пациента, базовоеблуждание, контакт электродов ЭКГ и другие. Кроме того, если ЭКГ контролируетсявизуально, вероятность получения человеческой ошибки высок, каждый 10-результатинтерпретируется с ошибкой (Brikena Xhaja, 2015: 305-312). А также по многим ЭКГ снимкампросто не возможно провести визуальный анализ частотных данных сигнала. Морфологиянизкоамплитудных высокочастотных сигналов, так называемых Р волн, скрывает ценнуюинформацию для раннего доклинического прогнозирования болезней. То есть необходимостьпоиска новых методов ранней доклинической диагностики все еще актуальна. Посколькубольшая часть клинически полезной информации в ЭКГ обнаруживается в интервалах и амплитудах, определяемых ее значимыми точками (характерные пики и границыволн), разработка точных и надежных методов автоматического разграничения ЭКГявляется предметом серьезной важности, особенно для анализа длинных записей(Juan Pablo Martinez, 2014: 570-581). Проблемы извлечения из электрофизиологическогосигнала информации, которую невозможно получить при визуальном анализе записи, атакже проблемы автоматизации традиционных алгоритмов врачебного анализа являютсяактуальными в связи с недостатком исследований в данной области. Целью исследованияявляется поиск новых областей применения метода вейвлетного преобразования вобработке сигналов. Получившее широкое распространение в 2000 годах в исследованиисвойств сигналов вейвлетное преобразование позволяет с помощью аппроксимирующихи детализирующих коэффициентов «разглядеть» скрытые частотно-временные данныесигнала. Полученные результаты показывают, что предлагаемый алгоритм обеспечиваетреальную эффективность в обработке первичных сигналов для задачи выделениядетализирующих коэффициентов ЭКГ сигнала. Наше исследование показывает, что вейвлет-анализ Морлета интервалов Р, который применять легко и недорого, может достовернопредсказать частоту симптоматических эпизодов пароксизмальной мерцательной аритмииу пациентов без клинически и эхокардиографически выраженной болезни сердца. Вейвлетанализ может способствовать нашему пониманию электрофизиологических механизмов,лежащих в основе генерации и рецидивов пароксизмальной мерцательной аритмии, иможет позволить идентифицировать пациентов с высоким риском увеличения рецидивовпароксизмальной мерцательной аритмии, тем самым создавая перспективу раннегоприменения неинвазивных и инвазивных терапевтических стратегий для предотвращениябудущих событий пароксизмальной мерцательной аритмии. Литература
Держатели документа:
ЗКГУ
Доп.точки доступа:
Nurmakhanova, Zh.M

Page 1, Results: 1

 

All acquisitions for 
Or select a month