Choice of metadata Статьи
Page 3, Results: 61
Report on unfulfilled requests: 0
21.

Подробнее
22.54
О-75
Особенности формирования малых напряженных алициклических соединений в процессе каталитической трансформации метанола на цеолите h-zsm-5 [Текст] / В. Ю. Долуда [и др.] // Известия высших учебных заведений. - Иваново, 2018. - №12. - С. 74-80. - (Серия химия и химическая технология)
ББК 22.54
Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ
Кл.слова (ненормированные):
напряженные углеводороды -- цеолит -- hzsm-5 -- трансформация метанола в углеводороды -- каталитическая трансформация -- циклические соединения -- диметилциклопропан -- триметилциклопропан -- тетраметилциклопропан -- циклические углеводороды -- физико-химические исследования -- хемосорбции аммиака -- сорбции азота
Аннотация: В статье приведены результаты исследования формирования напряженных углеводородов в процессе каталитической трансформации метанола в углеводороды на цеолите H-ZSM-5. Обнаружено образование следующих напряженных циклических соединений: 1,1-диметилциклопропана, 1,2 - диметилциклопропана, 1,1,2 - триметилциклопропана, 1,2,3 - триметилциклопропана, 1,1,2,2 - тетраметилциклопропана, 1,1,2,3 - тетраметилциклопропана. Установлен нестационарный характер образования напряженных циклических углеводородов с выраженным максимумом скорости образования углеводородов и последующей дезактивацией катализатора. Определено влияние температуры на выход напряженных углеводородов. Так, при увеличении температуры реакционного процесса до 400 °С на 350 ч реакции происходит образование максимума скорости реакции и накопление напряженных углеводородов увеличивается до 8-8,5 г(Угл)/(кг(Кат)·ч. Дальнейшее увеличение температуры реакции приводит к снижению скорости накопления напряженных углеводородов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Долуда, В.Ю.
Быков, А.В.
Сульман, М.Г.
Сидоров , А.И.
Лакина, Н.В.
Сульман, Э.М.
О-75
Особенности формирования малых напряженных алициклических соединений в процессе каталитической трансформации метанола на цеолите h-zsm-5 [Текст] / В. Ю. Долуда [и др.] // Известия высших учебных заведений. - Иваново, 2018. - №12. - С. 74-80. - (Серия химия и химическая технология)
Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ
Кл.слова (ненормированные):
напряженные углеводороды -- цеолит -- hzsm-5 -- трансформация метанола в углеводороды -- каталитическая трансформация -- циклические соединения -- диметилциклопропан -- триметилциклопропан -- тетраметилциклопропан -- циклические углеводороды -- физико-химические исследования -- хемосорбции аммиака -- сорбции азота
Аннотация: В статье приведены результаты исследования формирования напряженных углеводородов в процессе каталитической трансформации метанола в углеводороды на цеолите H-ZSM-5. Обнаружено образование следующих напряженных циклических соединений: 1,1-диметилциклопропана, 1,2 - диметилциклопропана, 1,1,2 - триметилциклопропана, 1,2,3 - триметилциклопропана, 1,1,2,2 - тетраметилциклопропана, 1,1,2,3 - тетраметилциклопропана. Установлен нестационарный характер образования напряженных циклических углеводородов с выраженным максимумом скорости образования углеводородов и последующей дезактивацией катализатора. Определено влияние температуры на выход напряженных углеводородов. Так, при увеличении температуры реакционного процесса до 400 °С на 350 ч реакции происходит образование максимума скорости реакции и накопление напряженных углеводородов увеличивается до 8-8,5 г(Угл)/(кг(Кат)·ч. Дальнейшее увеличение температуры реакции приводит к снижению скорости накопления напряженных углеводородов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Долуда, В.Ю.
Быков, А.В.
Сульман, М.Г.
Сидоров , А.И.
Лакина, Н.В.
Сульман, Э.М.
22.

Подробнее
35.51
В 58
Влияние ингибиторов на основе производных фосфита на хемилюминесценцию при фото- и термоокислении дизельного топлива [Текст] / А.П. Мамедов [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2019. - Т.62(3). - С. 76-82
ББК 35.51
Рубрики: Технология топлива
Кл.слова (ненормированные):
ингибиторы -- фенолы -- фосфиты -- хемилюминесценция -- фото-и термическое окисление -- валентность фосфора -- нафтенопарафиновые углеводороды -- ароматические углеводороды -- химия
Аннотация: Проведены исследования термо-и фототермоокисления дизельного топлива методами термохемилюминесценции и фототермохемилюминесценции с участием ингибиторов на основе фосфитов с различными заместителями. Рассмотрены влияния особенностей строения ингибиторов на эффективность и степень тушения хемилюминесценции в интервале температур 20-220ºС до и после воздействия фотооблучения с использованием светофильтра, имитирующего солнечное излучение. Основными компонентами дизельного топлива с температурной кипения 180-360ºС являются нафтено-парафиновые и алкиларо-матические углеводороды. Большая чувствительность дизельных топлив к фотоокислению обусловлена наличием в их составе фенантреновых углеводородов, обладающих большим временем жизни триплетного состояния. Установлено, что фотохимические реакции в дизельном топливе происходят по молекулярному и радикальному механизмам, соответственно по одно-и двухквантовым способам поглощения света. Одноквантовый процесс происходит в ароматических кольцах с образованием эндопероксидов. Двухквантовый процесс протекает в результате внутримолекулярного переноса энергии от ароматических колец к алкильным заместителям, в которых генерируются алкилароматические радикалы и атомы водорода.Последние из-за большой реакционной способности не стабилизируются и способствуют продолжению цепной реакции с образованием радикалов (Н+R-ArH→H2+R•-ArH). Обсуждается изменение валентности фосфора в ингибиторах при их взаимодействии с пероксидными радикалами, образованными в нафтено-парафиновых и алкилароматических углеводородах. Рассмотрены минимальное и максимальное количества указанных радикалов, вступающих в реакцию с молекулами, содержащими фрагменты со слабосвязанными С−Н связями и неспаренными электронами С•−О•, образующимися при фотооблучении ингибитора. Показано, что для термического и фототермического окисления дизельного топлива более эффективным ингибитором является ингибитор II. Установлено, что ингибитор II является более эффективным при термоокислении, чем при фотоокислении.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Мамедов, А.П.
Расулов, Ч.К.
Салманова, Ч.К.
Ахмедбекова, С.Ф.
Нагиева, М.В.
Дадашова, Н.Р.
В 58
Влияние ингибиторов на основе производных фосфита на хемилюминесценцию при фото- и термоокислении дизельного топлива [Текст] / А.П. Мамедов [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2019. - Т.62(3). - С. 76-82
Рубрики: Технология топлива
Кл.слова (ненормированные):
ингибиторы -- фенолы -- фосфиты -- хемилюминесценция -- фото-и термическое окисление -- валентность фосфора -- нафтенопарафиновые углеводороды -- ароматические углеводороды -- химия
Аннотация: Проведены исследования термо-и фототермоокисления дизельного топлива методами термохемилюминесценции и фототермохемилюминесценции с участием ингибиторов на основе фосфитов с различными заместителями. Рассмотрены влияния особенностей строения ингибиторов на эффективность и степень тушения хемилюминесценции в интервале температур 20-220ºС до и после воздействия фотооблучения с использованием светофильтра, имитирующего солнечное излучение. Основными компонентами дизельного топлива с температурной кипения 180-360ºС являются нафтено-парафиновые и алкиларо-матические углеводороды. Большая чувствительность дизельных топлив к фотоокислению обусловлена наличием в их составе фенантреновых углеводородов, обладающих большим временем жизни триплетного состояния. Установлено, что фотохимические реакции в дизельном топливе происходят по молекулярному и радикальному механизмам, соответственно по одно-и двухквантовым способам поглощения света. Одноквантовый процесс происходит в ароматических кольцах с образованием эндопероксидов. Двухквантовый процесс протекает в результате внутримолекулярного переноса энергии от ароматических колец к алкильным заместителям, в которых генерируются алкилароматические радикалы и атомы водорода.Последние из-за большой реакционной способности не стабилизируются и способствуют продолжению цепной реакции с образованием радикалов (Н+R-ArH→H2+R•-ArH). Обсуждается изменение валентности фосфора в ингибиторах при их взаимодействии с пероксидными радикалами, образованными в нафтено-парафиновых и алкилароматических углеводородах. Рассмотрены минимальное и максимальное количества указанных радикалов, вступающих в реакцию с молекулами, содержащими фрагменты со слабосвязанными С−Н связями и неспаренными электронами С•−О•, образующимися при фотооблучении ингибитора. Показано, что для термического и фототермического окисления дизельного топлива более эффективным ингибитором является ингибитор II. Установлено, что ингибитор II является более эффективным при термоокислении, чем при фотоокислении.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Мамедов, А.П.
Расулов, Ч.К.
Салманова, Ч.К.
Ахмедбекова, С.Ф.
Нагиева, М.В.
Дадашова, Н.Р.
23.

Подробнее
35.512
П 53
Получение гранулированного активного угля из отходов растительного сырья [Текст] / Е. А. Фарберова [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(3). - С. 51-57
ББК 35.512
Рубрики: Переработка твердого топлива. Переработка угля
Кл.слова (ненормированные):
гранулированный активный уголь -- гранулы сферической формы -- сырье растительного происхождения -- жидкостная грануляция -- пористая структура -- карбонизация -- активация -- химия
Аннотация: В процессах производства сельскохозяйственной продукции накапливаются достаточно большие количества твердых отходов, которые содержат высокомолекулярные углеводороды, такие как лигнин, целлюлоза и т.д. Однако такие отходы редко используются для получения активных углей, и известны лишь технологии с их использованием по получению дробленных или порошкообразных сорбционных материалов. В промышленности для изготовления гранулированных активных углей в основном используются ископаемые каменные угли. В рамках данной работы проведены исследования по разработке метода получения гранулированных активных углей сферической формы на основе отходов растительного сырья, образующихся в сельскохозяйственных производствах. Процесс гранулирования сорбентов осуществляли методом жидкостного диспергирования композиции, содержащей пылевидные отходы растительного происхождения и связующее. В качестве растительного сырья использовали скорлупу грецкого ореха и арахиса, косточку абрикоса, лузгу гречихи, а для сравнения - пылевидный слабоспекающийся каменный уголь. В качестве связующего применяли новолачную фенолформальдегидную смолу. Для удаления летучих веществ растительное сырьё подвергали предварительной термообработке без доступа воздуха в муфельной печи при оптимальной температуре, определенной термогравиметрическим методом. Измельченный углеродный материал смешивали со связующим компонентом в массовом соотношении 1:5 и полученную композицию распыляли в раствор серной кислоты с концентрацией 30-35% для отверждения гранул. Полученные гранулы выдерживали в растворе кислоты в течение 24-30 ч, сферические гранулы отделяли от жидкости, промывали дистиллированной водой до рН 5-6 и сушили сначала на воздухе, затем подвергали термообработке при высоких температурах. В результате проведённых исследований показана возможность регулирования характеристик пористой структуры сферических гранулированных активных углей в зависимости от используемого растительного сырья.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Фарберова , Е.А.
Тиньгаева , Е.А.
Чучалина , А.Д.
Кобелева , А.Р.
Максимов , А.С.
П 53
Получение гранулированного активного угля из отходов растительного сырья [Текст] / Е. А. Фарберова [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(3). - С. 51-57
Рубрики: Переработка твердого топлива. Переработка угля
Кл.слова (ненормированные):
гранулированный активный уголь -- гранулы сферической формы -- сырье растительного происхождения -- жидкостная грануляция -- пористая структура -- карбонизация -- активация -- химия
Аннотация: В процессах производства сельскохозяйственной продукции накапливаются достаточно большие количества твердых отходов, которые содержат высокомолекулярные углеводороды, такие как лигнин, целлюлоза и т.д. Однако такие отходы редко используются для получения активных углей, и известны лишь технологии с их использованием по получению дробленных или порошкообразных сорбционных материалов. В промышленности для изготовления гранулированных активных углей в основном используются ископаемые каменные угли. В рамках данной работы проведены исследования по разработке метода получения гранулированных активных углей сферической формы на основе отходов растительного сырья, образующихся в сельскохозяйственных производствах. Процесс гранулирования сорбентов осуществляли методом жидкостного диспергирования композиции, содержащей пылевидные отходы растительного происхождения и связующее. В качестве растительного сырья использовали скорлупу грецкого ореха и арахиса, косточку абрикоса, лузгу гречихи, а для сравнения - пылевидный слабоспекающийся каменный уголь. В качестве связующего применяли новолачную фенолформальдегидную смолу. Для удаления летучих веществ растительное сырьё подвергали предварительной термообработке без доступа воздуха в муфельной печи при оптимальной температуре, определенной термогравиметрическим методом. Измельченный углеродный материал смешивали со связующим компонентом в массовом соотношении 1:5 и полученную композицию распыляли в раствор серной кислоты с концентрацией 30-35% для отверждения гранул. Полученные гранулы выдерживали в растворе кислоты в течение 24-30 ч, сферические гранулы отделяли от жидкости, промывали дистиллированной водой до рН 5-6 и сушили сначала на воздухе, затем подвергали термообработке при высоких температурах. В результате проведённых исследований показана возможность регулирования характеристик пористой структуры сферических гранулированных активных углей в зависимости от используемого растительного сырья.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Фарберова , Е.А.
Тиньгаева , Е.А.
Чучалина , А.Д.
Кобелева , А.Р.
Максимов , А.С.
24.

Подробнее
24.7
Р 17
Разработка и промышленная апробация технологий кобальтовых катализаторов синтеза длинноцепочечных углеводородов из синтез-газа [Текст] / А. П. Савостьянов [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 53-58
ББК 24.7
Рубрики: Химия высокомолекулярных соединений (полимеров)
Кл.слова (ненормированные):
катализатор кобальтовый -- параметры процесса -- высокомолекулярные углеводороды С35 (церезин) -- производительность -- промышленная апробация -- синтез-газа -- химия
Аннотация: Обоснованы составы, методы приготовления и конкретные технологические параметры процессов производства кобальтовых катализаторов для синтеза длинноцепочечных углеводородов из синтез-газа. Для получения селективных по С35+ катализаторов методом соосаждения активных компонентов носитель должен обеспечивать полидисперсное распределение объема пор по радиусам. Это достигается гидротермальной обработкой алюмосиликатного носителя. Для повышения прочности катализаторов возможно введение в состав соосажденных катализаторов природных бентонитов и диатомитов месторождений Ростовской области. Эффективными каталитическими системами являются пропиточные катализаторы на носителях Al2O3 и SiO2 с промотированием оксидом алюминия. Введение Al2O3 5 % от кобальта металлического позволяет сформировать на поверхности SiO2 кристаллиты системы Co-CoO размером 8 нм, которые обеспечивают высокую активность и селективность по церезину. Оксид алюминия стабилизирует Со3О4 в структуре с высокой степенью упорядоченности, не затрудняя его восстановление, с образованием кобальта преимущественно с кристаллической структурой гексагональной плотной упаковки. Технологии катализаторов реализованы в промышленности. Катализаторы прошли длительные непрерывные испытания (1000 ч) в лабораторных и промышленных условиях, показали высокую стабильность работы. В течение всего времени эксплуатации выход углеводородов С5+ составлял 159-171 г/нм3 в расчете на переработанный синтез-газ. Получаемый длинноцепочечный углеводород С35+ (церезин) отличается высоким качеством: температура каплепадения составила 114-116 °С (содержание церезина 37-40 %). Эксплуатация в течение года двух промышленных реакторов на Новочеркасском заводе синтетических продуктов с суммарным объёмом загрузки катализатора 18 м3 подтвердила результаты лабораторных испытаний.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Савостьянов, А.П.
Яковенко, Р.Е.
Нарочный, Г.Б.
Бакун, В.Г.
Меркин, А.А.
Р 17
Разработка и промышленная апробация технологий кобальтовых катализаторов синтеза длинноцепочечных углеводородов из синтез-газа [Текст] / А. П. Савостьянов [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 53-58
Рубрики: Химия высокомолекулярных соединений (полимеров)
Кл.слова (ненормированные):
катализатор кобальтовый -- параметры процесса -- высокомолекулярные углеводороды С35 (церезин) -- производительность -- промышленная апробация -- синтез-газа -- химия
Аннотация: Обоснованы составы, методы приготовления и конкретные технологические параметры процессов производства кобальтовых катализаторов для синтеза длинноцепочечных углеводородов из синтез-газа. Для получения селективных по С35+ катализаторов методом соосаждения активных компонентов носитель должен обеспечивать полидисперсное распределение объема пор по радиусам. Это достигается гидротермальной обработкой алюмосиликатного носителя. Для повышения прочности катализаторов возможно введение в состав соосажденных катализаторов природных бентонитов и диатомитов месторождений Ростовской области. Эффективными каталитическими системами являются пропиточные катализаторы на носителях Al2O3 и SiO2 с промотированием оксидом алюминия. Введение Al2O3 5 % от кобальта металлического позволяет сформировать на поверхности SiO2 кристаллиты системы Co-CoO размером 8 нм, которые обеспечивают высокую активность и селективность по церезину. Оксид алюминия стабилизирует Со3О4 в структуре с высокой степенью упорядоченности, не затрудняя его восстановление, с образованием кобальта преимущественно с кристаллической структурой гексагональной плотной упаковки. Технологии катализаторов реализованы в промышленности. Катализаторы прошли длительные непрерывные испытания (1000 ч) в лабораторных и промышленных условиях, показали высокую стабильность работы. В течение всего времени эксплуатации выход углеводородов С5+ составлял 159-171 г/нм3 в расчете на переработанный синтез-газ. Получаемый длинноцепочечный углеводород С35+ (церезин) отличается высоким качеством: температура каплепадения составила 114-116 °С (содержание церезина 37-40 %). Эксплуатация в течение года двух промышленных реакторов на Новочеркасском заводе синтетических продуктов с суммарным объёмом загрузки катализатора 18 м3 подтвердила результаты лабораторных испытаний.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Савостьянов, А.П.
Яковенко, Р.Е.
Нарочный, Г.Б.
Бакун, В.Г.
Меркин, А.А.
25.

Подробнее
24.5
В 58
Влияние способа формирования наноразмерных суспензий на их физико-химические и каталитические свойства в условиях синтеза Фишера-Тропша [Текст] / М. В. Куликова [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 70-75
ББК 24.5
Рубрики: Физическая химия. Химическая физика
Кл.слова (ненормированные):
синтез Фишера-Тропша -- сларри-реактор -- каталитические суспензии -- наноразмерные катализаторы -- химия
Аннотация: Предложены способы формирования стабильных железосодержащих суспензий, проявляющих активность в превращении синтез-газа в углеводороды С5+ по методу Фишера-Тропша. Методами РФА и ДРС определено, что при формировании суспензии методом капельного термолиза − постепенном введении раствора прекурсора активного металла в дисперсионную среду (смесь углеводородов C19H40-C32H66) − происходит образование фазы Fe2O3 с бимодальным распределением частиц по размерам, которые составляют 50 и 295 нм. Импульсное введение раствора прекурсора активного металла (флеш-пиролиз) в зону реактора приводит к формированию фазы Fe3O4 с размером частиц 91 и 460 нм. Методами ПЭМ и АСМ установлено, что независимо от метода формирования суспензии крупные частицы активной фазы представляют собой агломераты более мелкой фракции частиц со средним размером 42 нм. Полученные суспензии проявили высокую активность в синтезе Фишера-Тропша в условиях сларри-реактора, однако степень превращения СО несколько выше в случае каталитической суспензии, приготовленной методом капельного термолиза. Показано, что способ формирования суспензии значительно влияет на фракционный состав получаемых продуктов реакции. В присутствии суспензии, полученной методом капельного термолиза, выход жидких углеводородов достигает 130 г/м3, при этом наблюдается высокое содержание углеводородов С19+. Система, сформированная методом флеш-пиролиза, позволяет получить преимущественно бензиновую (С5-С10) и дизельную (С11-С18) фракцию углеводородов. Стоит отметить, что в продуктах реакции наблюдается высокое содержание непредельных углеводородов, которое достигает 55%. Таким образом, состав конечных продуктов СФТ можно регулировать с помощью выбора метода формирования каталитической суспензии.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Куликова , М.В.
Дементьева , О.С.
Чудакова , М.В.
Иванцов , М.И.
В 58
Влияние способа формирования наноразмерных суспензий на их физико-химические и каталитические свойства в условиях синтеза Фишера-Тропша [Текст] / М. В. Куликова [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 70-75
Рубрики: Физическая химия. Химическая физика
Кл.слова (ненормированные):
синтез Фишера-Тропша -- сларри-реактор -- каталитические суспензии -- наноразмерные катализаторы -- химия
Аннотация: Предложены способы формирования стабильных железосодержащих суспензий, проявляющих активность в превращении синтез-газа в углеводороды С5+ по методу Фишера-Тропша. Методами РФА и ДРС определено, что при формировании суспензии методом капельного термолиза − постепенном введении раствора прекурсора активного металла в дисперсионную среду (смесь углеводородов C19H40-C32H66) − происходит образование фазы Fe2O3 с бимодальным распределением частиц по размерам, которые составляют 50 и 295 нм. Импульсное введение раствора прекурсора активного металла (флеш-пиролиз) в зону реактора приводит к формированию фазы Fe3O4 с размером частиц 91 и 460 нм. Методами ПЭМ и АСМ установлено, что независимо от метода формирования суспензии крупные частицы активной фазы представляют собой агломераты более мелкой фракции частиц со средним размером 42 нм. Полученные суспензии проявили высокую активность в синтезе Фишера-Тропша в условиях сларри-реактора, однако степень превращения СО несколько выше в случае каталитической суспензии, приготовленной методом капельного термолиза. Показано, что способ формирования суспензии значительно влияет на фракционный состав получаемых продуктов реакции. В присутствии суспензии, полученной методом капельного термолиза, выход жидких углеводородов достигает 130 г/м3, при этом наблюдается высокое содержание углеводородов С19+. Система, сформированная методом флеш-пиролиза, позволяет получить преимущественно бензиновую (С5-С10) и дизельную (С11-С18) фракцию углеводородов. Стоит отметить, что в продуктах реакции наблюдается высокое содержание непредельных углеводородов, которое достигает 55%. Таким образом, состав конечных продуктов СФТ можно регулировать с помощью выбора метода формирования каталитической суспензии.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Куликова , М.В.
Дементьева , О.С.
Чудакова , М.В.
Иванцов , М.И.
26.

Подробнее
24
Н 61
Low-percentage Со/Сlay catalysts in the process of oxidative conversion of C3-C4 saturated hydrocarbons [Текст] = Низкопроцентные Сo/Глиновые катализаторы в процессе окисения насыщенных С3-С4 углеводородов / B. K. Massalimova [et al.] // Известия НАН РК. Серия химии и технологии. - 2019. - №2. - С. 6-11
ББК 24
Рубрики: Химические науки
Кл.слова (ненормированные):
катализатор -- углеводороды -- природная глина -- химия
Аннотация: Исследовано окислительное превращение С3-С4 углеводородов воздухом в кислородсодержащие композиции при Т=400-550о С и объемной скорости 7500ч-1, 9000ч-1 на монооксидных катализаторах, содержащих 1-, 3-, 5% Сo, нанесенных на природные красные глины. В процессе полуокисления С3-С4 углеводородов исследовались температура реакции, время контакта, изменение объемной скорости. Кислотная обработка сорбентов способствовала разработке поверхности и увеличению радиуса пор, что приводило к увеличению кислородсодержащих соединений в катализате. SiO2/Al2O3 соотношение (силикатный модуль) также увеличивался после кислотной обработки.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Massalimova, B.K.
Jetpіsbayeva, G.D.
Altynbekova, D.T.
Nauruzkulova, S.M.
Atakozhaeva, A.A.
Sadykov, V.A.
Н 61
Low-percentage Со/Сlay catalysts in the process of oxidative conversion of C3-C4 saturated hydrocarbons [Текст] = Низкопроцентные Сo/Глиновые катализаторы в процессе окисения насыщенных С3-С4 углеводородов / B. K. Massalimova [et al.] // Известия НАН РК. Серия химии и технологии. - 2019. - №2. - С. 6-11
Рубрики: Химические науки
Кл.слова (ненормированные):
катализатор -- углеводороды -- природная глина -- химия
Аннотация: Исследовано окислительное превращение С3-С4 углеводородов воздухом в кислородсодержащие композиции при Т=400-550о С и объемной скорости 7500ч-1, 9000ч-1 на монооксидных катализаторах, содержащих 1-, 3-, 5% Сo, нанесенных на природные красные глины. В процессе полуокисления С3-С4 углеводородов исследовались температура реакции, время контакта, изменение объемной скорости. Кислотная обработка сорбентов способствовала разработке поверхности и увеличению радиуса пор, что приводило к увеличению кислородсодержащих соединений в катализате. SiO2/Al2O3 соотношение (силикатный модуль) также увеличивался после кислотной обработки.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Massalimova, B.K.
Jetpіsbayeva, G.D.
Altynbekova, D.T.
Nauruzkulova, S.M.
Atakozhaeva, A.A.
Sadykov, V.A.
27.

Подробнее
24
С 75
Comparative analysis of the nonpolar fraction of the aerial and underground parts of the limonium gmelinii plants by the GC-MS method [Текст] = Сравнительный анализ неполярной фракции надземной и подземной частей растений Limonium Gmelinii методом GC-MS / A.I. Zhussupova [et al.] // Известия НАН РК. Серия химии и технологии. - 2019. - №2. - С. 55-60
ББК 24
Рубрики: Химические науки
Кл.слова (ненормированные):
Limonium gmelinii -- неполярная фракция -- хромато-масс спектрометрия -- химический состав -- надземная часть растения -- подземная часть растения -- химия
Аннотация: В данной статье рассматривается химический состав неполярной фракции, полученной из надземной и подземной частей растения Limonium gmelinii (Willd.) (кepмeк Гмeлинa), заготовленного в Алматинской области в 2018 году. Экстракты были получены методом жидкостной экстракции гексаном и изучены посредством хромато-масс спектрометрии на газовом хроматографе с масс-селективным детектором. В результате исследования из надземной части растения Limonium gmelinii было выделено 22 соединения, доминирующими из которых, как в количественном, так и в качественном плане, являются углеводороды, такие как геникозан и эйкозан и трикозан; также были выделены производные хинолина и фитола. Установлено высокое содержание производных ациклических дитерпеновых спиртов, помимо этого идентифицирован высший спирт 3,7,11,15-тетраметил-2-гексадекан1-ол. Анализ неполярного экстракта, полученного из корней Limonium gmelinii позволил выделить 14 соединений; из них основную долю в количестве составляют эфиры высших карбоновых кислот и углеводороды. Сложные эфиры представлены в форме этиловых эфиров гексадекановой, олеиновой и линолевой кислот с преобладанием в них эфиров полиеновых кислот. Среди углеводородов в наибольшем количестве присутствуют тридекан, тетрадекан, гептадекан, октадекан и тетракозан.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Zhussupova, A.I.
Ikhsanov, Y.S.
Mamutova, A.A.
Zhusupova , G.E.
С 75
Comparative analysis of the nonpolar fraction of the aerial and underground parts of the limonium gmelinii plants by the GC-MS method [Текст] = Сравнительный анализ неполярной фракции надземной и подземной частей растений Limonium Gmelinii методом GC-MS / A.I. Zhussupova [et al.] // Известия НАН РК. Серия химии и технологии. - 2019. - №2. - С. 55-60
Рубрики: Химические науки
Кл.слова (ненормированные):
Limonium gmelinii -- неполярная фракция -- хромато-масс спектрометрия -- химический состав -- надземная часть растения -- подземная часть растения -- химия
Аннотация: В данной статье рассматривается химический состав неполярной фракции, полученной из надземной и подземной частей растения Limonium gmelinii (Willd.) (кepмeк Гмeлинa), заготовленного в Алматинской области в 2018 году. Экстракты были получены методом жидкостной экстракции гексаном и изучены посредством хромато-масс спектрометрии на газовом хроматографе с масс-селективным детектором. В результате исследования из надземной части растения Limonium gmelinii было выделено 22 соединения, доминирующими из которых, как в количественном, так и в качественном плане, являются углеводороды, такие как геникозан и эйкозан и трикозан; также были выделены производные хинолина и фитола. Установлено высокое содержание производных ациклических дитерпеновых спиртов, помимо этого идентифицирован высший спирт 3,7,11,15-тетраметил-2-гексадекан1-ол. Анализ неполярного экстракта, полученного из корней Limonium gmelinii позволил выделить 14 соединений; из них основную долю в количестве составляют эфиры высших карбоновых кислот и углеводороды. Сложные эфиры представлены в форме этиловых эфиров гексадекановой, олеиновой и линолевой кислот с преобладанием в них эфиров полиеновых кислот. Среди углеводородов в наибольшем количестве присутствуют тридекан, тетрадекан, гептадекан, октадекан и тетракозан.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Zhussupova, A.I.
Ikhsanov, Y.S.
Mamutova, A.A.
Zhusupova , G.E.
28.

Подробнее
28
В 92
Isolation and study of thermotolerant oil-oxidizing microorganisms [Текст] = Выделение и изучение термотолерантных нефтеокисляющих микроорганизмов / S.A. Aitkeldiyeva [et al.] // Известия НАН РК. Серия биологическая и медицинская. - 2019. - №2. - С. 56-62
ББК 28
Рубрики: Биологические науки
Кл.слова (ненормированные):
нефть -- нефтяное загрязнение -- термотолерантные нефтеокисляющие микроорганизмы -- деструкция нефти -- биология
Аннотация: Климатические условия ограничивают эффективность применения большинства известных ремедиационных методов в регионах с жарким климатом. В нефтедобывающих регионах Казахстана климат характеризуется сезонными и суточными перепадами температур, высокими темпами испарения воды, засоленностью и низкой влажностью грунта. В связи с этим проблема разработки и применения технологий, адаптированных к вышеперечисленным условиям, является актуальной для Казахстана и дальнего зарубежья. Термотолерантные углеводородокисляющие микроорганизмы, адаптированные к экстремальным климатическим условиям, способны окислять углеводороды нефти при повышенных температурах. Целью исследований было выделение и отбор культур термотолерантных нефтеокисляющих микроорганизмов, а также изучение их активности. Из нефтезагрязненной почвы месторождения Жанаталап (Атырауская область) методом накопительных культур выделено 72 изолята. Из них отобрано 15 культур, показавших хороший и умеренный рост при 35о С, 7 культур – при 40 о С и 12 культур – при 50о С. Изучена их нефтеокисляющая активность. Показано, что при культивировании изолятов в жидкой минеральной среде с нефтью степень ее деструкции при 35о С составляла 18,7-52,0%, при 40о С – 22,7-31,5%, а при 50о С – 17,7-33,8%.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Aitkeldiyeva, S.A.
Faizulina, E.R.
Auezova, O.N.
Tatarkina, L.G.
Spankulova , G.A.
В 92
Isolation and study of thermotolerant oil-oxidizing microorganisms [Текст] = Выделение и изучение термотолерантных нефтеокисляющих микроорганизмов / S.A. Aitkeldiyeva [et al.] // Известия НАН РК. Серия биологическая и медицинская. - 2019. - №2. - С. 56-62
Рубрики: Биологические науки
Кл.слова (ненормированные):
нефть -- нефтяное загрязнение -- термотолерантные нефтеокисляющие микроорганизмы -- деструкция нефти -- биология
Аннотация: Климатические условия ограничивают эффективность применения большинства известных ремедиационных методов в регионах с жарким климатом. В нефтедобывающих регионах Казахстана климат характеризуется сезонными и суточными перепадами температур, высокими темпами испарения воды, засоленностью и низкой влажностью грунта. В связи с этим проблема разработки и применения технологий, адаптированных к вышеперечисленным условиям, является актуальной для Казахстана и дальнего зарубежья. Термотолерантные углеводородокисляющие микроорганизмы, адаптированные к экстремальным климатическим условиям, способны окислять углеводороды нефти при повышенных температурах. Целью исследований было выделение и отбор культур термотолерантных нефтеокисляющих микроорганизмов, а также изучение их активности. Из нефтезагрязненной почвы месторождения Жанаталап (Атырауская область) методом накопительных культур выделено 72 изолята. Из них отобрано 15 культур, показавших хороший и умеренный рост при 35о С, 7 культур – при 40 о С и 12 культур – при 50о С. Изучена их нефтеокисляющая активность. Показано, что при культивировании изолятов в жидкой минеральной среде с нефтью степень ее деструкции при 35о С составляла 18,7-52,0%, при 40о С – 22,7-31,5%, а при 50о С – 17,7-33,8%.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Aitkeldiyeva, S.A.
Faizulina, E.R.
Auezova, O.N.
Tatarkina, L.G.
Spankulova , G.A.
29.

Подробнее
22.3
Ж 13
Жаврин, Ю. И.
Температурные зависимости эффективных коэффициентов диффузии для двух многокомпонентных газовых систем, содержащихвоздух, водород и некоторые углеводороды [Текст] / Ю. И. Жаврин // Вестник КАЗНУ. - 2017. - №3. - С. 17-23 ; Серия физика
ББК 22.3
Рубрики: Физика
Кл.слова (ненормированные):
диффузия -- ЭКД -- бинарная диффузия -- бароэффект -- массоперенос
Аннотация: В данной статье представлены расчеты показателей степеней температурных зависимостей эффективных коэффициентов диффузии (ЭКД) газов в двух многокомпонентных смесях, которые в той или иной мере могут использоваться при горении газообразного топлива. Приведенные схемы расчетов температурных зависимостей ЭКД проведены для интервала температур 298 – 900 К и атмосферного давления. Основными источниками информации по данной работе являлись публикации ряда ученых, а также исследования авторов данной статьи, которые, в свое время, разработали и аттестовали во ВНИЦ МВ Госстандарта СССР таблицы рекомендуемых справочных данных по ЭКД для технически важных диффундирующих многокомпонентных смесей. Полученные результаты позволяют полнее раскрыть механизм диффузионного процесса в сложных газовых смесях с изменением температуры, дать оценку переносу каждого компонента и суммарного массопереноса в целом. Можно надеяться, что представленные результаты послужат в качестве нового справочного материала.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Молдабекова, М.С.
Асембаева, М.К.
Федоренко, О.В.
Мукамеденкызы, В.
Ж 13
Жаврин, Ю. И.
Температурные зависимости эффективных коэффициентов диффузии для двух многокомпонентных газовых систем, содержащихвоздух, водород и некоторые углеводороды [Текст] / Ю. И. Жаврин // Вестник КАЗНУ. - 2017. - №3. - С. 17-23 ; Серия физика
Рубрики: Физика
Кл.слова (ненормированные):
диффузия -- ЭКД -- бинарная диффузия -- бароэффект -- массоперенос
Аннотация: В данной статье представлены расчеты показателей степеней температурных зависимостей эффективных коэффициентов диффузии (ЭКД) газов в двух многокомпонентных смесях, которые в той или иной мере могут использоваться при горении газообразного топлива. Приведенные схемы расчетов температурных зависимостей ЭКД проведены для интервала температур 298 – 900 К и атмосферного давления. Основными источниками информации по данной работе являлись публикации ряда ученых, а также исследования авторов данной статьи, которые, в свое время, разработали и аттестовали во ВНИЦ МВ Госстандарта СССР таблицы рекомендуемых справочных данных по ЭКД для технически важных диффундирующих многокомпонентных смесей. Полученные результаты позволяют полнее раскрыть механизм диффузионного процесса в сложных газовых смесях с изменением температуры, дать оценку переносу каждого компонента и суммарного массопереноса в целом. Можно надеяться, что представленные результаты послужат в качестве нового справочного материала.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Молдабекова, М.С.
Асембаева, М.К.
Федоренко, О.В.
Мукамеденкызы, В.
30.

Подробнее
26.3
С 28
Сейтхазиев , Е. Ш.
Молекулярный и изотопный состав углерода в образцах попутных газов [Текст] / Е. Ш. Сейтхазиев // Нефть и газ. - 2019. - №5. - С. 64-79
ББК 26.3
Рубрики: Геология
Кл.слова (ненормированные):
компонентный состав газа -- изотопный состав газа -- фракционирование Релэя
Аннотация: Представлены результаты и интерпретация компонентного и изотопного анализа углерода в пяти пробах газа месторождений С. Нуржанов и Прорва Западная. Результаты исследований показали, что пробы газов С. Нуржанов и Прорва Западная имеют термогенный источник и их ОВ осаждалось в морской среде (тип керогена II). Для газов месторождения С. Нуржанов характерен более изотопно-тяжелый метан. Также пробы газов из месторождения Прорва Западная являются попутным нефтяным газом, в то время как пробы из месторождения С. Нуржанов по составу близки к газовым конденсатам. Исследованные пробы небиодеградированные, резкое утяжеление изотопного состава углерода пропана и н-бутана на фоне их гомологов не наблюдалось. Несмотря на то, что исследованные пробы газа характеризуются достаточно близким изотопным составом углерода С1 -С5 , по характеру изотопно-фракционных кривых, а также на основании данных молекулярного состава газа, эти пять проб можно разделить на две группы. 1-я группа – газы месторождения С. Нуржанов характеризуются высокой долей кислых компонентов СО2 и H2 S. Углеводороды С1 -С4 образуют практически прямую линию в координатах δ13С – 1/n, что позволяет говорить о том, что пробы месторождения С. Нуржанов имеют один источник происхождения. 2-я группа – это газы месторождения Прорва Западная – близки как по компонентному составу, так и по форме изотопно-фракционных кривых – наблюдается некоторое облегчение метана.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Тасеменов, Е.Т.
С 28
Сейтхазиев , Е. Ш.
Молекулярный и изотопный состав углерода в образцах попутных газов [Текст] / Е. Ш. Сейтхазиев // Нефть и газ. - 2019. - №5. - С. 64-79
Рубрики: Геология
Кл.слова (ненормированные):
компонентный состав газа -- изотопный состав газа -- фракционирование Релэя
Аннотация: Представлены результаты и интерпретация компонентного и изотопного анализа углерода в пяти пробах газа месторождений С. Нуржанов и Прорва Западная. Результаты исследований показали, что пробы газов С. Нуржанов и Прорва Западная имеют термогенный источник и их ОВ осаждалось в морской среде (тип керогена II). Для газов месторождения С. Нуржанов характерен более изотопно-тяжелый метан. Также пробы газов из месторождения Прорва Западная являются попутным нефтяным газом, в то время как пробы из месторождения С. Нуржанов по составу близки к газовым конденсатам. Исследованные пробы небиодеградированные, резкое утяжеление изотопного состава углерода пропана и н-бутана на фоне их гомологов не наблюдалось. Несмотря на то, что исследованные пробы газа характеризуются достаточно близким изотопным составом углерода С1 -С5 , по характеру изотопно-фракционных кривых, а также на основании данных молекулярного состава газа, эти пять проб можно разделить на две группы. 1-я группа – газы месторождения С. Нуржанов характеризуются высокой долей кислых компонентов СО2 и H2 S. Углеводороды С1 -С4 образуют практически прямую линию в координатах δ13С – 1/n, что позволяет говорить о том, что пробы месторождения С. Нуржанов имеют один источник происхождения. 2-я группа – это газы месторождения Прорва Западная – близки как по компонентному составу, так и по форме изотопно-фракционных кривых – наблюдается некоторое облегчение метана.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Тасеменов, Е.Т.
Page 3, Results: 61