Choice of metadata Статьи
Page 5, Results: 78
Report on unfulfilled requests: 0
41.

Подробнее
22.1
Т 23
Tasmambetov, Zh.N.
The construction of a solution of a related system of the laguerre type [Текст] = Построения решения родственной системы типа лагерра / Zh.N. Tasmambetov, N. Rajabov, A.A. Issenova // Известия НАН РК. Серия физико-математическая. - 2019. - №1. - С. 38-45
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
Родственная -- система -- система типа Лагерра -- система Горна -- нормально-регулярное решение -- особые кривые -- ранг -- антиранг -- переопределенный -- математика
Аннотация: Целью работы является изучение системы типа Лагерра, полученной из вырожденной системы Горна непосредственным подбором параметров, а также с помощью экспоненциального преобразования. Такая система, состоящая из двух дифференциальных уравнений в частных производных второго порядка, нами названа родственной с основной системой типа Лагерра. Трудности изучения состоят в том, что если в обыкновенном случае имеет место одно вырожденное уравнение Куммера и только одна вырожденная гипергеометрическая функция, удовлетворяющая ему, то в случае двух переменных появляются 20 вырожденных систем и 20 вырожденных гипергеометрических функций двух переменных удовлетворяющих им. Пока не известно, сколько существуют систем типа Лагерра, и с какими из 20-ти вырожденных систем они связаны. Отсутствует общий метод исследования. В данной работе для построения их нормально-регулярного решения, зависящего от ISSN 1991-346X News of the National Academy of sciences of the Republic of Kazakhstan. 1. 2019 45 многочлена Лагерра двух переменных, применен обобщенный на этот случай Ж.Н.Тасмамбетовым метод Фробениуса-Латышевой. Приведена классификация особых кривых с помощью ранга и антиранга, а также основные сведения об особенностях построения нормально-регулярных решений таких систем. Доказана основная теорема о существовании четырех линейно-независимых частных решений, которые определяются через вырожденную гипергеометрическую функцию М.П.Гумберта в виде нормально-регулярных рядов зависящих от многочленов Лагерра двух переменных. В выводах указана связь таких систем с переопределенными системами и некоторыми представлениями многочлена Лагерра двух переменных.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Rajabov, N.
Issenova, A.A.
Т 23
Tasmambetov, Zh.N.
The construction of a solution of a related system of the laguerre type [Текст] = Построения решения родственной системы типа лагерра / Zh.N. Tasmambetov, N. Rajabov, A.A. Issenova // Известия НАН РК. Серия физико-математическая. - 2019. - №1. - С. 38-45
Рубрики: Математика
Кл.слова (ненормированные):
Родственная -- система -- система типа Лагерра -- система Горна -- нормально-регулярное решение -- особые кривые -- ранг -- антиранг -- переопределенный -- математика
Аннотация: Целью работы является изучение системы типа Лагерра, полученной из вырожденной системы Горна непосредственным подбором параметров, а также с помощью экспоненциального преобразования. Такая система, состоящая из двух дифференциальных уравнений в частных производных второго порядка, нами названа родственной с основной системой типа Лагерра. Трудности изучения состоят в том, что если в обыкновенном случае имеет место одно вырожденное уравнение Куммера и только одна вырожденная гипергеометрическая функция, удовлетворяющая ему, то в случае двух переменных появляются 20 вырожденных систем и 20 вырожденных гипергеометрических функций двух переменных удовлетворяющих им. Пока не известно, сколько существуют систем типа Лагерра, и с какими из 20-ти вырожденных систем они связаны. Отсутствует общий метод исследования. В данной работе для построения их нормально-регулярного решения, зависящего от ISSN 1991-346X News of the National Academy of sciences of the Republic of Kazakhstan. 1. 2019 45 многочлена Лагерра двух переменных, применен обобщенный на этот случай Ж.Н.Тасмамбетовым метод Фробениуса-Латышевой. Приведена классификация особых кривых с помощью ранга и антиранга, а также основные сведения об особенностях построения нормально-регулярных решений таких систем. Доказана основная теорема о существовании четырех линейно-независимых частных решений, которые определяются через вырожденную гипергеометрическую функцию М.П.Гумберта в виде нормально-регулярных рядов зависящих от многочленов Лагерра двух переменных. В выводах указана связь таких систем с переопределенными системами и некоторыми представлениями многочлена Лагерра двух переменных.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Rajabov, N.
Issenova, A.A.
42.

Подробнее
22.1
О 13
About single operator method of solution of a singularly perturbed Сauchy problem for an ordinary differential equation n – order [Текст] = Об одном операторном методе решения сингулярно возмущенной задачи Коши для обыкновенного дифференциального уравнения n-го порядка / M. I. Akylbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 17-36
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
Сингулярное возмущение -- спектральное разложение -- отклоняющиеся аргумент -- оценка остаточного члена -- самосопряженный оператор -- теорема Гилберта - Шмидта -- вполне непрерывный оператор -- лемма Фридрихса -- задача Коши -- асимптотическое разложение -- малый параметр -- математика
Аннотация: В настоящей работе, методом отклоняющегося аргумента, получено асимптотическое разложение решения задачи Коши для обыкновенного дифференциального уравнения ݊ െ го порядка с переменными коэффициентами, с оценкой остаточного члена через правую часть уравнения. Многие работы посвященные к этой теме носят прикладной характер, и полученные им оценки остаточного члена выражены в терминах ܱ െбольшое, или െмалое, поэтому имеют теоретическое значение, нежели прикладное, как они утверждают.Основным достойнством предлагаемого нами метода яяляется простота его алгортитма, и формула остаточного члена, явно выраженная через правую часть уравнения, и его оценка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Akylbayev, M.I.
Shaldanbayev, A.Sh.
Orazov, I.
Beysebayeva, A.
О 13
About single operator method of solution of a singularly perturbed Сauchy problem for an ordinary differential equation n – order [Текст] = Об одном операторном методе решения сингулярно возмущенной задачи Коши для обыкновенного дифференциального уравнения n-го порядка / M. I. Akylbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 17-36
Рубрики: Математика
Кл.слова (ненормированные):
Сингулярное возмущение -- спектральное разложение -- отклоняющиеся аргумент -- оценка остаточного члена -- самосопряженный оператор -- теорема Гилберта - Шмидта -- вполне непрерывный оператор -- лемма Фридрихса -- задача Коши -- асимптотическое разложение -- малый параметр -- математика
Аннотация: В настоящей работе, методом отклоняющегося аргумента, получено асимптотическое разложение решения задачи Коши для обыкновенного дифференциального уравнения ݊ െ го порядка с переменными коэффициентами, с оценкой остаточного члена через правую часть уравнения. Многие работы посвященные к этой теме носят прикладной характер, и полученные им оценки остаточного члена выражены в терминах ܱ െбольшое, или െмалое, поэтому имеют теоретическое значение, нежели прикладное, как они утверждают.Основным достойнством предлагаемого нами метода яяляется простота его алгортитма, и формула остаточного члена, явно выраженная через правую часть уравнения, и его оценка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Akylbayev, M.I.
Shaldanbayev, A.Sh.
Orazov, I.
Beysebayeva, A.
43.

Подробнее
22.1
О 11
On the square root of the operator of Sturm-Liouville fourth-order [Текст] = О квадратном корне из оператора Штурма-Лиувилля четвёртого порядка / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 85-96
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
гипотеза Като -- диссипативный оператор -- квадратный корень из оператора -- теорема Путнама -- отклоняющиеся аргумент -- дробные степени оператора -- обратная задача -- спектр -- унитарный оператор -- самосопряженный оператор -- положительный оператор -- функционально-дифференциальный оператор -- спектральная теория -- математика
Аннотация: В настоящей работе найден корень из положительного оператора Штурма - Лиувилля четвертого порядка, являющегося композицией обратимого оператора Штурма - Лиувилля и его сопряженного. Найденный корень не обладает свойством положительности, но является самосопряженным оператором в существенном. В качестве наводящей идеи использована одна теорема Путнама алгебраического характера. Можно надеяться, что результаты работы найдут приложения в спектральной теории операторов и теоретической физике.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayev, А.Sh.
Imanbayeva, A.B.
Beisebayeva, A.Zh.
Shaldanbayeva, А.А.
О 11
On the square root of the operator of Sturm-Liouville fourth-order [Текст] = О квадратном корне из оператора Штурма-Лиувилля четвёртого порядка / А.Sh. Shaldanbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 85-96
Рубрики: Математика
Кл.слова (ненормированные):
гипотеза Като -- диссипативный оператор -- квадратный корень из оператора -- теорема Путнама -- отклоняющиеся аргумент -- дробные степени оператора -- обратная задача -- спектр -- унитарный оператор -- самосопряженный оператор -- положительный оператор -- функционально-дифференциальный оператор -- спектральная теория -- математика
Аннотация: В настоящей работе найден корень из положительного оператора Штурма - Лиувилля четвертого порядка, являющегося композицией обратимого оператора Штурма - Лиувилля и его сопряженного. Найденный корень не обладает свойством положительности, но является самосопряженным оператором в существенном. В качестве наводящей идеи использована одна теорема Путнама алгебраического характера. Можно надеяться, что результаты работы найдут приложения в спектральной теории операторов и теоретической физике.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayev, А.Sh.
Imanbayeva, A.B.
Beisebayeva, A.Zh.
Shaldanbayeva, А.А.
44.

Подробнее
22.1
Ш 18
Shaldanbayev, А.Sh.
On square root of Sturm-Liuville operator [Текст] = О квадратном корне из оператора Штурма - Лиувилля / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 97–113
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
оператор Штурма - Лиувилля -- квадратный корень из оператора -- функциональнодифференциальный оператор -- уравнения с отклоняющимся аргументом -- гипотеза Като -- пример Макинтоша -- оператор Гурса -- обратная задача -- спектр -- собственные значения -- собственные функции -- унитарный оператор -- оператор подобия -- математика
Аннотация: В данной работе найден корень квадратный из оператора Штурма - Лиувилля и показан, что этот корень является функционально- дифференциальным оператором первого порядка. Найден вид соответствующей краевой задачи этого функционально - дифференциального уравнения. В качестве наводящей идеи использована одна теорема Путнама. Краевые условия оператора Штурма - Лиувилля имеют весьма специальный вид, и они продиктованы методом исследования. Найденный унитарный оператор обобщает известного оператора импульса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayevа, А.А.
Shaldanbay, B.А.
Ш 18
Shaldanbayev, А.Sh.
On square root of Sturm-Liuville operator [Текст] = О квадратном корне из оператора Штурма - Лиувилля / А.Sh. Shaldanbayev, А.А. Shaldanbayevа, B.А. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №3. - С. 97–113
Рубрики: Математика
Кл.слова (ненормированные):
оператор Штурма - Лиувилля -- квадратный корень из оператора -- функциональнодифференциальный оператор -- уравнения с отклоняющимся аргументом -- гипотеза Като -- пример Макинтоша -- оператор Гурса -- обратная задача -- спектр -- собственные значения -- собственные функции -- унитарный оператор -- оператор подобия -- математика
Аннотация: В данной работе найден корень квадратный из оператора Штурма - Лиувилля и показан, что этот корень является функционально- дифференциальным оператором первого порядка. Найден вид соответствующей краевой задачи этого функционально - дифференциального уравнения. В качестве наводящей идеи использована одна теорема Путнама. Краевые условия оператора Штурма - Лиувилля имеют весьма специальный вид, и они продиктованы методом исследования. Найденный унитарный оператор обобщает известного оператора импульса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayevа, А.А.
Shaldanbay, B.А.
45.

Подробнее
22.161.6
Б 41
Бейсенова, Д. Р.
Тербелмелі аралық коэффициентті екінші ретті шексіз айырымдық жүйенің коэрцитивті шешілу шарттары [Текст] / Д. Р. Бейсенова, Қ. Н. Оспанов, Т. Н. Бекжан // Қазақстан Республикасы Ұлттық инженерлік академиясының хабаршысы=Вестник Национальной инженерной академии Республики Казахстан. - Алматы, 2019. - №2. - Б. 12-19
ББК 22.161.6
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
айырымдық жүйе -- тербелмелі коэффициент -- жалпылған шешім -- салмақты норма -- коэрцитивті баға -- аралық коэффициенттер -- математика -- теорема
Аннотация: Мақалада теріс емес аралық коэффициентті екінші ретті шексіз айырымдық теңдеулер жүйесінің шешімінің бар болуы және жалғыздығы шарттары алынған. Шешімнің салмақты нормаларының бағадары жасалды және оның бірінші және екінші ретті айырымдарының бағалары алынды. Аралық коэффициент тәуелсіз өскенде қарастырылып отырған жүйе нұқсанды жүйе болады, аралық коэффициент қатты тербеле алады және де теріс емес.
Держатели документа:
БҚМУ
Доп.точки доступа:
Оспанов, Қ.Н.
Бекжан, Т.Н.
Б 41
Бейсенова, Д. Р.
Тербелмелі аралық коэффициентті екінші ретті шексіз айырымдық жүйенің коэрцитивті шешілу шарттары [Текст] / Д. Р. Бейсенова, Қ. Н. Оспанов, Т. Н. Бекжан // Қазақстан Республикасы Ұлттық инженерлік академиясының хабаршысы=Вестник Национальной инженерной академии Республики Казахстан. - Алматы, 2019. - №2. - Б. 12-19
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
айырымдық жүйе -- тербелмелі коэффициент -- жалпылған шешім -- салмақты норма -- коэрцитивті баға -- аралық коэффициенттер -- математика -- теорема
Аннотация: Мақалада теріс емес аралық коэффициентті екінші ретті шексіз айырымдық теңдеулер жүйесінің шешімінің бар болуы және жалғыздығы шарттары алынған. Шешімнің салмақты нормаларының бағадары жасалды және оның бірінші және екінші ретті айырымдарының бағалары алынды. Аралық коэффициент тәуелсіз өскенде қарастырылып отырған жүйе нұқсанды жүйе болады, аралық коэффициент қатты тербеле алады және де теріс емес.
Держатели документа:
БҚМУ
Доп.точки доступа:
Оспанов, Қ.Н.
Бекжан, Т.Н.
46.

Подробнее
22.161.6
Б 79
Болатбеқұлы, М.
Кейбір дифференциалдық теңдеулер үшін корректі шеттік есептер жайлы [Текст] / М. Болатбеқұлы, Н. Н. Сүлеймен // Қазақстан жоғары мектебі = Высшая школа Казакстана. - 2019. - №3. - Б. 215-220
ББК 22.161.6
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
дифференциалдық теңдеулер -- есептер -- формула -- теорема -- функция -- шеттік есеп -- туынды теңдеуі
Аннотация: Кейбір дифференциалдық теңдеулер үшін корректі шеттік есептер жайлы
Держатели документа:
БҚМУ
Доп.точки доступа:
Сүлеймен , Н.Н.
Б 79
Болатбеқұлы, М.
Кейбір дифференциалдық теңдеулер үшін корректі шеттік есептер жайлы [Текст] / М. Болатбеқұлы, Н. Н. Сүлеймен // Қазақстан жоғары мектебі = Высшая школа Казакстана. - 2019. - №3. - Б. 215-220
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
дифференциалдық теңдеулер -- есептер -- формула -- теорема -- функция -- шеттік есеп -- туынды теңдеуі
Аннотация: Кейбір дифференциалдық теңдеулер үшін корректі шеттік есептер жайлы
Держатели документа:
БҚМУ
Доп.точки доступа:
Сүлеймен , Н.Н.
47.

Подробнее
22.161.6
А 50
Әлішер, Н. Т.
Жүктелген парабола тиіпті теңдеу үшін қойылған локальді емес шеттік есеп [Текст] / Н. Т. Әлішер, А. Б. Оразова, А. Құрмаш // Қазақстан жоғары мектебі = Высшая школа Казахстана. - 2019. - №3. - Б. 220-228
ББК 22.161.6
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
жүктелген парабола -- шеттік есеп -- жүктелген дифференциалдық теңдеулер -- интеграл -- жүктелген интегродифференциалдық -- жүктелген функционалдық теңдеулер -- биологиялық есептер -- функция -- гронуолл леммасы -- теорема -- априолық бағалау -- роте әдісі -- локалді емес бастапқышеттік есептер
Аннотация: Жүктелген парабола тиіпті теңдеу үшін қойылған локальді емес шеттік есеп
Держатели документа:
БҚМУ
Доп.точки доступа:
Оразова, А.Б.
Құрмаш, А.
А 50
Әлішер, Н. Т.
Жүктелген парабола тиіпті теңдеу үшін қойылған локальді емес шеттік есеп [Текст] / Н. Т. Әлішер, А. Б. Оразова, А. Құрмаш // Қазақстан жоғары мектебі = Высшая школа Казахстана. - 2019. - №3. - Б. 220-228
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
жүктелген парабола -- шеттік есеп -- жүктелген дифференциалдық теңдеулер -- интеграл -- жүктелген интегродифференциалдық -- жүктелген функционалдық теңдеулер -- биологиялық есептер -- функция -- гронуолл леммасы -- теорема -- априолық бағалау -- роте әдісі -- локалді емес бастапқышеттік есептер
Аннотация: Жүктелген парабола тиіпті теңдеу үшін қойылған локальді емес шеттік есеп
Держатели документа:
БҚМУ
Доп.точки доступа:
Оразова, А.Б.
Құрмаш, А.
48.

Подробнее
22.161.6
А 51
Алматбаева , Б. Д.
Ерекшелікті коэффициенттерімен Карлеман-Векуа теңдеуінің үзіліссіз шешімі [Текст] / Б. Д. Алматбаева // Қазақстан жоғары мектебі = Высшая школа Казакстана. - 2019. - №3. - Б. 233-238
ББК 22.161.6
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
математика -- дифференциалдық Карлеман-Векуа теңдеу -- коэффициент -- геометрия -- механика -- функция -- интеграл -- голоморф -- теорема
Аннотация: Ерекшелікті коэффициенттерімен Карлеман-Векуа теңдеуінің үзіліссіз шешімі
Держатели документа:
БҚМУ
А 51
Алматбаева , Б. Д.
Ерекшелікті коэффициенттерімен Карлеман-Векуа теңдеуінің үзіліссіз шешімі [Текст] / Б. Д. Алматбаева // Қазақстан жоғары мектебі = Высшая школа Казакстана. - 2019. - №3. - Б. 233-238
Рубрики: Дифференциальные, интегральные и интегро-дифференциальные уравнения. Исчисление конечных разностей
Кл.слова (ненормированные):
математика -- дифференциалдық Карлеман-Векуа теңдеу -- коэффициент -- геометрия -- механика -- функция -- интеграл -- голоморф -- теорема
Аннотация: Ерекшелікті коэффициенттерімен Карлеман-Векуа теңдеуінің үзіліссіз шешімі
Держатели документа:
БҚМУ
49.

Подробнее
22.1
А 11
Ақылбаев , М. И.
Коэффициенттері айнымалы түрі арнайы толқын теңдеуінің гурсалық есебінің периодты шешімі туралы [Текст] / М. И. Ақылбаев // ҚР ҰҒА Хабарлары . - 2018. - №1. - Б. 34-55 ; Физика-математика сериясы
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
Волтерлік операторлар -- индефинитті метрика -- Гурсаның есебі -- ұқсастық операторы -- спектр -- спектралдік таралым -- Фүренің әдісі -- ортогональді базис -- Гилберт-Шмидтің теоремасы
Аннотация: Бұл еңбекте коэффиценттері айнымалы ал түрі арнайы толқын теңдеуіне қойылған Гурсаның есебі шешілді. Шешімнің спектралді кейпі табылды. Мұндай жағдай волтерлі есептерге тән емес. Бұл үшін көмекші есеп ретінде аргументі ауытқыған дифференциалдық теңдеу қолданылды.
Держатели документа:
БҚМУ
Доп.точки доступа:
Бейсебаева, А.
Шалданбаева, Ш.
А 11
Ақылбаев , М. И.
Коэффициенттері айнымалы түрі арнайы толқын теңдеуінің гурсалық есебінің периодты шешімі туралы [Текст] / М. И. Ақылбаев // ҚР ҰҒА Хабарлары . - 2018. - №1. - Б. 34-55 ; Физика-математика сериясы
Рубрики: Математика
Кл.слова (ненормированные):
Волтерлік операторлар -- индефинитті метрика -- Гурсаның есебі -- ұқсастық операторы -- спектр -- спектралдік таралым -- Фүренің әдісі -- ортогональді базис -- Гилберт-Шмидтің теоремасы
Аннотация: Бұл еңбекте коэффиценттері айнымалы ал түрі арнайы толқын теңдеуіне қойылған Гурсаның есебі шешілді. Шешімнің спектралді кейпі табылды. Мұндай жағдай волтерлі есептерге тән емес. Бұл үшін көмекші есеп ретінде аргументі ауытқыған дифференциалдық теңдеу қолданылды.
Держатели документа:
БҚМУ
Доп.точки доступа:
Бейсебаева, А.
Шалданбаева, Ш.
50.

Подробнее
22.1
Т 11
Төленов , К. С.
Коммутативті емес НЕ (AL) кеңестігінің толықтығы [Текст] / К. С. Төленов // ҚР ҰҒА Хабарлары . - 2018. - №2. - Б. 65-74
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
Фон Нейман алгебрасы -- l-өлшемді оператор -- субдиагональді алгебра -- коммутативты емес симметрикалық кеңістік -- коммутативты емес Харди кеңістігі
Аннотация: Коммутативті емес вектор-мәнді Харди кеңістіктері (2-де) енгізілді. Осы мақалада Коммуникативті емес Харди кеңістіктерінде максималды функцияның мәселелерін қарастырамыз. Сол себепті біз комуникативті емес вектор-мәнді симметриялық Харди кеңістіктерін енгіземіз. Сондай-ақ, Сайто теоремасы ұқсайтын факторизациялық теореманы аламыз. Коммуникативті емес мартингал теориясы, коммуникативті емес эргодик теориясы және оператор мәнді Харди кеңістіктер теориясы үшін қолдануға болады.
Держатели документа:
БҚМУ
Доп.точки доступа:
Дәуітбек , Д.
Т 11
Төленов , К. С.
Коммутативті емес НЕ (AL) кеңестігінің толықтығы [Текст] / К. С. Төленов // ҚР ҰҒА Хабарлары . - 2018. - №2. - Б. 65-74
Рубрики: Математика
Кл.слова (ненормированные):
Фон Нейман алгебрасы -- l-өлшемді оператор -- субдиагональді алгебра -- коммутативты емес симметрикалық кеңістік -- коммутативты емес Харди кеңістігі
Аннотация: Коммутативті емес вектор-мәнді Харди кеңістіктері (2-де) енгізілді. Осы мақалада Коммуникативті емес Харди кеңістіктерінде максималды функцияның мәселелерін қарастырамыз. Сол себепті біз комуникативті емес вектор-мәнді симметриялық Харди кеңістіктерін енгіземіз. Сондай-ақ, Сайто теоремасы ұқсайтын факторизациялық теореманы аламыз. Коммуникативті емес мартингал теориясы, коммуникативті емес эргодик теориясы және оператор мәнді Харди кеңістіктер теориясы үшін қолдануға болады.
Держатели документа:
БҚМУ
Доп.точки доступа:
Дәуітбек , Д.
Page 5, Results: 78