Электронный каталог


 

База данных: Статьи

Страница 1, Результатов: 8

Отмеченные записи: 0

24.54
P80

Polenov, Yu. V.
    Kinetic model of thiourea dioxide decomposition in aqueous solutions of different acidity [Текст] / Yu. V. Polenov, G. А. Shestakov, E. V. Egorova // Известия высших учебных заведений. - Иваново, 2018. - №12. - Р. 87-93. - (Серия химия и химическая технология)
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
диоксид тиомочевины -- стехиометрический механизм -- кинетическая модель -- константа скорости -- иодометрический метод -- полярография -- электрохимическая ячейка -- ртутный электрод -- коэффициенты корреляции -- критерии Фишера -- Верификация -- слабощелочная среда
Аннотация: Предложен стехиометрический механизм полного разложения диоксида тиомочевины в водном растворе при рН 4,0, основанный на зависимости концентраций диоксида тиомочевины и продуктов его разложения во времени и литературных данных.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shestakov, G.А.
Egorova, E.V.

Polenov, Yu.V. Kinetic model of thiourea dioxide decomposition in aqueous solutions of different acidity [Текст] / Yu. V. Polenov, G. А. Shestakov, E. V. Egorova // Известия высших учебных заведений. - Иваново, 2018. - №12.- Р.87-93

1.

Polenov, Yu.V. Kinetic model of thiourea dioxide decomposition in aqueous solutions of different acidity [Текст] / Yu. V. Polenov, G. А. Shestakov, E. V. Egorova // Известия высших учебных заведений. - Иваново, 2018. - №12.- Р.87-93


24.54
P80

Polenov, Yu. V.
    Kinetic model of thiourea dioxide decomposition in aqueous solutions of different acidity [Текст] / Yu. V. Polenov, G. А. Shestakov, E. V. Egorova // Известия высших учебных заведений. - Иваново, 2018. - №12. - Р. 87-93. - (Серия химия и химическая технология)
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
диоксид тиомочевины -- стехиометрический механизм -- кинетическая модель -- константа скорости -- иодометрический метод -- полярография -- электрохимическая ячейка -- ртутный электрод -- коэффициенты корреляции -- критерии Фишера -- Верификация -- слабощелочная среда
Аннотация: Предложен стехиометрический механизм полного разложения диоксида тиомочевины в водном растворе при рН 4,0, основанный на зависимости концентраций диоксида тиомочевины и продуктов его разложения во времени и литературных данных.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shestakov, G.А.
Egorova, E.V.

24.54
Ч-93

Чурсанов, Ю. В.
    Кинетика растворения золота в водной системе тиомочевина-тиосульфат с окислителем Fe(III)ЭДТА [Текст] / Ю. В. Чурсанов, В. И. Луцик, А. В. Старовойтов // Известия высших учебных заведений. - Иваново, 2018. - №12. - С. 94-100. - (Серия химия и химическая технология)
ББК 24.54

Рубрики: Химическая кинетика

Кл.слова (ненормированные):
золото -- тиомочевина -- тиосульфат -- Fe(III)ЭДТА -- кинетика растворения -- вращающийся диск -- гетеролигандные комплексы -- кинетические закономерности -- растворение золота -- ЭДТА -- гетеролигандные комплексы -- экспериментальная энергия активации -- Диффузионное лимитирование -- ИК-спектр
Аннотация: Исследованы кинетические закономерности растворения золота при окислении в водных растворах, содержащих тиомочевину и тиосульфат натрия. В качестве окислителя использовали комплекс железа (III) с этилендиаминтетраацетатом. Тиомочевина и ионы тиосульфата являются лигандами в реакциях комплексообразования с золотом. Особенностью данной системы реагентов является возможность образования как монолигандных, так и гетеролигандных комплексов Au(I), а также возможность регенерации окислителя – комплекса железа с ЭДТА кислородом воздуха.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Луцик, В.И.
Старовойтов, А.В.

Чурсанов, Ю.В. Кинетика растворения золота в водной системе тиомочевина-тиосульфат с окислителем Fe(III)ЭДТА [Текст] / Ю. В. Чурсанов, В. И. Луцик, А. В. Старовойтов // Известия высших учебных заведений. - Иваново, 2018. - №12.- С.94-100

2.

Чурсанов, Ю.В. Кинетика растворения золота в водной системе тиомочевина-тиосульфат с окислителем Fe(III)ЭДТА [Текст] / Ю. В. Чурсанов, В. И. Луцик, А. В. Старовойтов // Известия высших учебных заведений. - Иваново, 2018. - №12.- С.94-100


24.54
Ч-93

Чурсанов, Ю. В.
    Кинетика растворения золота в водной системе тиомочевина-тиосульфат с окислителем Fe(III)ЭДТА [Текст] / Ю. В. Чурсанов, В. И. Луцик, А. В. Старовойтов // Известия высших учебных заведений. - Иваново, 2018. - №12. - С. 94-100. - (Серия химия и химическая технология)
ББК 24.54

Рубрики: Химическая кинетика

Кл.слова (ненормированные):
золото -- тиомочевина -- тиосульфат -- Fe(III)ЭДТА -- кинетика растворения -- вращающийся диск -- гетеролигандные комплексы -- кинетические закономерности -- растворение золота -- ЭДТА -- гетеролигандные комплексы -- экспериментальная энергия активации -- Диффузионное лимитирование -- ИК-спектр
Аннотация: Исследованы кинетические закономерности растворения золота при окислении в водных растворах, содержащих тиомочевину и тиосульфат натрия. В качестве окислителя использовали комплекс железа (III) с этилендиаминтетраацетатом. Тиомочевина и ионы тиосульфата являются лигандами в реакциях комплексообразования с золотом. Особенностью данной системы реагентов является возможность образования как монолигандных, так и гетеролигандных комплексов Au(I), а также возможность регенерации окислителя – комплекса железа с ЭДТА кислородом воздуха.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Луцик, В.И.
Старовойтов, А.В.

24.54
Д 37


    Деструкция красителя кислотного Оранжевого 52 электрокаталитическим и фотокаталитическим методами с обнаружением промежуточных продуктов [Текст] / Х. Чжао [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 111-118
ББК 24.54

Рубрики: 24.54 Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
высокоэффективные окислительные процессы -- электрокаталитический метод -- фотокаталитический метод -- краситель кислоты оранжевый 52 -- деструкция красителя -- механизм (путь) процесса деструкции -- химия
Аннотация: Изучена эффективность деструкции красителя кислотного оранжевого 52 в водных растворах при совмещении электрокаталитического и фотокаталитического процессов. Электрокаталитический и фотокаталитический методы на практике относят к высокоэффективным окислительным процессам (ВОП). При проведении фотокаталитического процесса изучали влияние дозы катализатора B и времени облучения на степень деструкции красителя. Нами было показано, что при обработке в оптимальных условиях электрокаталитическим методом с катализатором A модельных сточных вод, содержащих краситель кислотный оранжевый 52, эффективность обесцвечивания составила 95% в видимой области спектра (464 нм) и 38,6% в ультрафиолетовой области (270 нм), соответственно. При использовании комбинации электрокаталитического и фотокаталитического процессов с катализаторами A и B, эффективность удаления окраски может достигать 99,3% (464 нм) и 91,5% (270 нм), соответственно. В ходе реакции окисления образуется большое количество продуктов с низкой молярной массой. Кроме того, полученные значения величин химического потребления кислорода (ХПК) и общего органического углерода (ООУ) свидетельствуют о том, что сочетание электрокаталитического и фотокаталитического методов обработки может значительно повысить способность к биологическому разложению красителя в целом. Было показано, что степень снижения величин ХПК и ООУ составила, соответственно, 54,3% и 72,8%. Промежуточные продукты реакции определяли методом электроспрей-ионизационной масс-спектрометрии (ESI-MS), что позволило в результате предложить механизм (путь) процесса деструкции красителя. Результаты работы могут быть полезными в качестве теоретической основы для проектирования эффективной ресурсосберегающей, технически эффективной и экономически обоснованной системы обработки сточных вод, содержащих труднобиоразлагаемые азокрасители.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Чжао , Х.
Чжун , Х.
Сунь , Л.
Ся, Д.
Невский , А. В.

Деструкция красителя кислотного Оранжевого 52 электрокаталитическим и фотокаталитическим методами с обнаружением промежуточных продуктов [Текст] / Х. Чжао [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.111-118

3.

Деструкция красителя кислотного Оранжевого 52 электрокаталитическим и фотокаталитическим методами с обнаружением промежуточных продуктов [Текст] / Х. Чжао [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.111-118


24.54
Д 37


    Деструкция красителя кислотного Оранжевого 52 электрокаталитическим и фотокаталитическим методами с обнаружением промежуточных продуктов [Текст] / Х. Чжао [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 111-118
ББК 24.54

Рубрики: 24.54 Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
высокоэффективные окислительные процессы -- электрокаталитический метод -- фотокаталитический метод -- краситель кислоты оранжевый 52 -- деструкция красителя -- механизм (путь) процесса деструкции -- химия
Аннотация: Изучена эффективность деструкции красителя кислотного оранжевого 52 в водных растворах при совмещении электрокаталитического и фотокаталитического процессов. Электрокаталитический и фотокаталитический методы на практике относят к высокоэффективным окислительным процессам (ВОП). При проведении фотокаталитического процесса изучали влияние дозы катализатора B и времени облучения на степень деструкции красителя. Нами было показано, что при обработке в оптимальных условиях электрокаталитическим методом с катализатором A модельных сточных вод, содержащих краситель кислотный оранжевый 52, эффективность обесцвечивания составила 95% в видимой области спектра (464 нм) и 38,6% в ультрафиолетовой области (270 нм), соответственно. При использовании комбинации электрокаталитического и фотокаталитического процессов с катализаторами A и B, эффективность удаления окраски может достигать 99,3% (464 нм) и 91,5% (270 нм), соответственно. В ходе реакции окисления образуется большое количество продуктов с низкой молярной массой. Кроме того, полученные значения величин химического потребления кислорода (ХПК) и общего органического углерода (ООУ) свидетельствуют о том, что сочетание электрокаталитического и фотокаталитического методов обработки может значительно повысить способность к биологическому разложению красителя в целом. Было показано, что степень снижения величин ХПК и ООУ составила, соответственно, 54,3% и 72,8%. Промежуточные продукты реакции определяли методом электроспрей-ионизационной масс-спектрометрии (ESI-MS), что позволило в результате предложить механизм (путь) процесса деструкции красителя. Результаты работы могут быть полезными в качестве теоретической основы для проектирования эффективной ресурсосберегающей, технически эффективной и экономически обоснованной системы обработки сточных вод, содержащих труднобиоразлагаемые азокрасители.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Чжао , Х.
Чжун , Х.
Сунь , Л.
Ся, Д.
Невский , А. В.

24.54
Л 86

Луцик, В. И.
    Влияние образования разнолигандных комплексов на кинетику окислительного растворения металлов [Текст] / В. И. Луцик, Ю. В. Чурсанов, А. В. Старовойтов // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(8). - С. 22-26
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
золото -- тиомочевина -- тиоцианат -- тиосульфат -- кинетика растворения -- вращающийся диск -- разнолигандные комплексы -- химия
Аннотация: Методом вращающегося диска изучено растворение золота в присутствии окислителя и смеси разнородных лигандообразующих реагентов. Исследованы кинетические закономерности растворения золота в водных системах тиомочевина–тиоцианат с ионами Fe(III) и Cu(II) в качестве окислителя: тиомочевина–тиосульфат окислитель – комплекс Fe(III)EDTA и тиосульфат–тиоцианат окислитель – аммиачный комплекс [Cu(NH3)4]2+. Особенностью данных смешанных систем является возможность образования как монолигандных, так и гетеролигандных комплексов золота. Рассмотрено влияние образования разнолигандных комплексов золота на скорость растворения металла. Исследована зависимость скорости от соотношения концентраций лигандов и природы окислителя. Установлена взаимосвязь: использование разнородных лигандообразующих реагентов – более высокая термодинамическая устойчивость образующихся гетеролигандных комплексов золота (относительно гомолигандных) – синергетические увеличение скорости растворения золота. Установлено, что для системы тиомочевина–тиоцианат– Fe(III) макромеханизм гетерфазной реакции определяется близостью скоростей химической и диффузионных стадий (экспериментальная энергия активации – 21,6 кДж/моль; порядок реакции по частоте вращения диска – 0,23). Диффузионное лимитирование обусловлено медленным отводом продуктов реакции – соединений Au(I) от поверхности твердой фазы. Образование более прочных гетеролигандных комплексов и соответствующий рост концентрации продуктов реакции у поверхности приводит к увеличению скорости диффузии металла в раствор. Для системы тиомочевина–тиосульфат–Fe(III)EDTA отмечено образование пленки твердых продуктов реакции на поверхности золота. Для ее идентификации получены ИК-спектры отражения полированной поверхности золота после травления в изученной системе. На спектрах наблюдается сильная полоса поглощения при 804 см-1. Поглощение в этой области связано с валентными симметричными колебаниями связи группы –С=S адсорбированных или химически связанных с поверхностью молекул тиомочевины и продуктов ее окисления.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Чурсанов, Ю.В.
Старовойтов, А.В.

Луцик, В.И. Влияние образования разнолигандных комплексов на кинетику окислительного растворения металлов [Текст] / В. И. Луцик, Ю. В. Чурсанов, А. В. Старовойтов // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(8).- С.22-26

4.

Луцик, В.И. Влияние образования разнолигандных комплексов на кинетику окислительного растворения металлов [Текст] / В. И. Луцик, Ю. В. Чурсанов, А. В. Старовойтов // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(8).- С.22-26


24.54
Л 86

Луцик, В. И.
    Влияние образования разнолигандных комплексов на кинетику окислительного растворения металлов [Текст] / В. И. Луцик, Ю. В. Чурсанов, А. В. Старовойтов // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(8). - С. 22-26
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
золото -- тиомочевина -- тиоцианат -- тиосульфат -- кинетика растворения -- вращающийся диск -- разнолигандные комплексы -- химия
Аннотация: Методом вращающегося диска изучено растворение золота в присутствии окислителя и смеси разнородных лигандообразующих реагентов. Исследованы кинетические закономерности растворения золота в водных системах тиомочевина–тиоцианат с ионами Fe(III) и Cu(II) в качестве окислителя: тиомочевина–тиосульфат окислитель – комплекс Fe(III)EDTA и тиосульфат–тиоцианат окислитель – аммиачный комплекс [Cu(NH3)4]2+. Особенностью данных смешанных систем является возможность образования как монолигандных, так и гетеролигандных комплексов золота. Рассмотрено влияние образования разнолигандных комплексов золота на скорость растворения металла. Исследована зависимость скорости от соотношения концентраций лигандов и природы окислителя. Установлена взаимосвязь: использование разнородных лигандообразующих реагентов – более высокая термодинамическая устойчивость образующихся гетеролигандных комплексов золота (относительно гомолигандных) – синергетические увеличение скорости растворения золота. Установлено, что для системы тиомочевина–тиоцианат– Fe(III) макромеханизм гетерфазной реакции определяется близостью скоростей химической и диффузионных стадий (экспериментальная энергия активации – 21,6 кДж/моль; порядок реакции по частоте вращения диска – 0,23). Диффузионное лимитирование обусловлено медленным отводом продуктов реакции – соединений Au(I) от поверхности твердой фазы. Образование более прочных гетеролигандных комплексов и соответствующий рост концентрации продуктов реакции у поверхности приводит к увеличению скорости диффузии металла в раствор. Для системы тиомочевина–тиосульфат–Fe(III)EDTA отмечено образование пленки твердых продуктов реакции на поверхности золота. Для ее идентификации получены ИК-спектры отражения полированной поверхности золота после травления в изученной системе. На спектрах наблюдается сильная полоса поглощения при 804 см-1. Поглощение в этой области связано с валентными симметричными колебаниями связи группы –С=S адсорбированных или химически связанных с поверхностью молекул тиомочевины и продуктов ее окисления.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Чурсанов, Ю.В.
Старовойтов, А.В.

24.54
В 58


    Влияние давления водорода, природы растворителя и катализатора на закономерности гидрогенизации 2-хлор-4-нитроанилина [Текст] / Д. М. Климушин [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 30-35
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
2-хлор-4-нитроанилин -- водород -- нанесенный палладиевый катализатор -- нанесенный платиновый катализатор -- скорость -- гидрогенизация -- 2-пропанол -- этилацетат -- автокалав Вишневского -- химия
Аннотация: Впервые проведено исследование кинетики жидкофазной гидрогенизации 2-хлор-4-нитроанилина на нанесенных палладиевых и платиновых катализаторах, отличающихся по природе носителя и содержанию активного металла. Эксперимент проводился при повышенных давлениях водорода в интервале 9 - 12 атм и температуре 303 К в растворителях 2-пропанол-вода и этилацетат в автоклаве Вишневского. Определены основные кинетические параметры реакции, а также установлено влияние различных параметров на закономерности протекания процесса. Показано, что повышение содержания активного металла в катализаторе приводит к увеличению скорости реакции гидрогенизации 2-хлор-4-нитроанилина. При использовании нанесенных платиновых катализаторов скорости реакции гидрогенизации 2-хлор-4-нитроанилина существенно выше, чем при использовании нанесенных палладиевых катализаторов. Однако с течением реакции на платиновых катализаторах скорость падает достаточно резко, а затем стабилизируется. Для палладия характерно менее резкое падение начальных скоростей. При этом палладиевые катализаторы отличаются более высокими скоростями на "стабильном" участке кинетической кривой. Замена жидкой фазы каталитической системы с 2-пропанола на этилацетат негативно влияет на величины скорости реакции. Кроме того, использование растворителя с меньшей полярностью приводит к существенному снижению скорости реакции независимо от природы активного металла, что делает принципиально возможным управление параметрами активности и селективности процесса действием растворителя. Определен характер влияния природы и состава каталитической системы на степень дегалогенирования целевого продукта. Установлено, что при проведении реакции при повышенных давлениях водорода предпочтительнее использовать низкопроцентные платиновые катализаторы, а не палладиевые, поскольку первые обеспечивают меньшие показатели дегалогенирования целевого продукта.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Климушин, Д.М.
Краснов, А.И.
Филиппов, Д.В.
Шаронов, Н.Ю.

Влияние давления водорода, природы растворителя и катализатора на закономерности гидрогенизации 2-хлор-4-нитроанилина [Текст] / Д. М. Климушин [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(9-10).- С.30-35

5.

Влияние давления водорода, природы растворителя и катализатора на закономерности гидрогенизации 2-хлор-4-нитроанилина [Текст] / Д. М. Климушин [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(9-10).- С.30-35


24.54
В 58


    Влияние давления водорода, природы растворителя и катализатора на закономерности гидрогенизации 2-хлор-4-нитроанилина [Текст] / Д. М. Климушин [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 30-35
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
2-хлор-4-нитроанилин -- водород -- нанесенный палладиевый катализатор -- нанесенный платиновый катализатор -- скорость -- гидрогенизация -- 2-пропанол -- этилацетат -- автокалав Вишневского -- химия
Аннотация: Впервые проведено исследование кинетики жидкофазной гидрогенизации 2-хлор-4-нитроанилина на нанесенных палладиевых и платиновых катализаторах, отличающихся по природе носителя и содержанию активного металла. Эксперимент проводился при повышенных давлениях водорода в интервале 9 - 12 атм и температуре 303 К в растворителях 2-пропанол-вода и этилацетат в автоклаве Вишневского. Определены основные кинетические параметры реакции, а также установлено влияние различных параметров на закономерности протекания процесса. Показано, что повышение содержания активного металла в катализаторе приводит к увеличению скорости реакции гидрогенизации 2-хлор-4-нитроанилина. При использовании нанесенных платиновых катализаторов скорости реакции гидрогенизации 2-хлор-4-нитроанилина существенно выше, чем при использовании нанесенных палладиевых катализаторов. Однако с течением реакции на платиновых катализаторах скорость падает достаточно резко, а затем стабилизируется. Для палладия характерно менее резкое падение начальных скоростей. При этом палладиевые катализаторы отличаются более высокими скоростями на "стабильном" участке кинетической кривой. Замена жидкой фазы каталитической системы с 2-пропанола на этилацетат негативно влияет на величины скорости реакции. Кроме того, использование растворителя с меньшей полярностью приводит к существенному снижению скорости реакции независимо от природы активного металла, что делает принципиально возможным управление параметрами активности и селективности процесса действием растворителя. Определен характер влияния природы и состава каталитической системы на степень дегалогенирования целевого продукта. Установлено, что при проведении реакции при повышенных давлениях водорода предпочтительнее использовать низкопроцентные платиновые катализаторы, а не палладиевые, поскольку первые обеспечивают меньшие показатели дегалогенирования целевого продукта.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Климушин, Д.М.
Краснов, А.И.
Филиппов, Д.В.
Шаронов, Н.Ю.

24.54
О-43


    Одностадийный синтез полиметаллических наночастиц в воздушной среде [Текст] / В. И. Романовский [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 42-47
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
нанопорошок -- кзотермическое горение в растворе -- биметаллическая частица -- одностадийный синтез -- воздушная среда -- химия
Аннотация: В работе изучена возможность получения биметаллических нанопорошков модифицированным методом горения в растворах с использованием лимонной кислоты в качестве восстановителя/топлива. В качестве исходных компонентов для приготовления водных растворов использовались стехиометрические количества нитратов металлов с отношением металл-металл 1:1 и 1:2 и топлива с отношением окислителя к топливу 1,75. Почти полное отсутствие фаз оксида металла было подтверждено методом рентгенофлюоресцентной энергодисперсионной спектроскопии. Рентгено-фазовый анализ полученных материалов показал, что все образцы представляют собой чистые биметаллические нанопорошки с искаженной кубической кристаллической структурой каждого металла. В соответствии с результатами просвечивающей электронной микроскопии высокого разрешения средний диаметр зерен металлических частиц составляет около 10 нм для всех нанопорошков. Вычисленные межплоскостные расстояния кристаллов металлических частиц, а также детальное исследование с помощью просвечивающей растровой электронной микроскопии показали равномерное распределение различных металлических специй в наночастицах. Таким образом, мы можем заключить, что нанопорошки представляют собой биметаллические частицы с коинтегрированными кристаллическими структурами разных металлов. Мы полагаем, что возможность использования модифицированного метода экзотермического горения в растворах биметаллического нанопорошка в воздушной среде обусловлена сочетанием типа и количества топлива, а также технологических условий синтеза. Это приводит к быстрому процессу горения при низкой температуре. Кроме того, защитная инертная атмосфера появляется выше свежесинтезированных металлических нанопорошков во время термического разложения топлив, что в конечном итоге предотвращает окисление металлов. Модифицированный метод экзотермического горения из растворов можно успешно использовать для одностадийного синтеза сложных оксидных или металл-оксидных систем типа ядро-оболочка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Романовский, В.И.
Хорт, К.Б.
Подболотов, К.Б.
Сдобняков, Н.Ю.
Мясниченко, В.С.
Соколов, Д.Н.

Одностадийный синтез полиметаллических наночастиц в воздушной среде [Текст] / В. И. Романовский [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(9-10).- С.42-47

6.

Одностадийный синтез полиметаллических наночастиц в воздушной среде [Текст] / В. И. Романовский [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(9-10).- С.42-47


24.54
О-43


    Одностадийный синтез полиметаллических наночастиц в воздушной среде [Текст] / В. И. Романовский [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(9-10). - С. 42-47
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
нанопорошок -- кзотермическое горение в растворе -- биметаллическая частица -- одностадийный синтез -- воздушная среда -- химия
Аннотация: В работе изучена возможность получения биметаллических нанопорошков модифицированным методом горения в растворах с использованием лимонной кислоты в качестве восстановителя/топлива. В качестве исходных компонентов для приготовления водных растворов использовались стехиометрические количества нитратов металлов с отношением металл-металл 1:1 и 1:2 и топлива с отношением окислителя к топливу 1,75. Почти полное отсутствие фаз оксида металла было подтверждено методом рентгенофлюоресцентной энергодисперсионной спектроскопии. Рентгено-фазовый анализ полученных материалов показал, что все образцы представляют собой чистые биметаллические нанопорошки с искаженной кубической кристаллической структурой каждого металла. В соответствии с результатами просвечивающей электронной микроскопии высокого разрешения средний диаметр зерен металлических частиц составляет около 10 нм для всех нанопорошков. Вычисленные межплоскостные расстояния кристаллов металлических частиц, а также детальное исследование с помощью просвечивающей растровой электронной микроскопии показали равномерное распределение различных металлических специй в наночастицах. Таким образом, мы можем заключить, что нанопорошки представляют собой биметаллические частицы с коинтегрированными кристаллическими структурами разных металлов. Мы полагаем, что возможность использования модифицированного метода экзотермического горения в растворах биметаллического нанопорошка в воздушной среде обусловлена сочетанием типа и количества топлива, а также технологических условий синтеза. Это приводит к быстрому процессу горения при низкой температуре. Кроме того, защитная инертная атмосфера появляется выше свежесинтезированных металлических нанопорошков во время термического разложения топлив, что в конечном итоге предотвращает окисление металлов. Модифицированный метод экзотермического горения из растворов можно успешно использовать для одностадийного синтеза сложных оксидных или металл-оксидных систем типа ядро-оболочка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Романовский, В.И.
Хорт, К.Б.
Подболотов, К.Б.
Сдобняков, Н.Ю.
Мясниченко, В.С.
Соколов, Д.Н.

24.54
Д 46


    Динамика графитизации поверхности детонационных нано- и микроалмазов [Текст] / Н. В. Шевченко [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(11). - С. 25-30
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
детонационный синтез -- детонационные наноалмазы -- микроалмазы -- фазовый состав углерода -- графитизация -- онионы -- рентгенофазовый анализ -- рентгенофазовый анализ -- комбинационное рассеяние света -- химия
Аннотация: Исследованы характеристические особенности, свойства и фазовый состав поверхности нано- и микрокристаллов алмаза детонационного синтеза, подвергнутых графитизации. Закономерности протекания данного процесса и накопление продуктов графитизации были изучены путем применения комбинационного рассеяния света (КРС), электронной микроскопией и рентгенофазного анализа образцов микропорошков. В качестве объектов исследований были использованы образцы химически очищенных детонационных нано- и микроалмазов, полученных методом детонационного синтеза. Использованные образцы углеродных частиц исследованы в диапазоне температур 20 – 1500 °С, в атмосфере инертного газа, при различных скоростях нагревания объекта. Графитизация наноалмазов характеризуется строгими этапными превращениями, связанными с ростом КРС интенсивности пиков КРС (1350 и 1610 см-1), характеризующими графитизацию, связанную с появлением и накоплением sp2-типа углеродных связей. Регистрируемые проявления КРС связанны с появлением и накоплением кристаллических и аморфных продуктов наноалмазной графитизации. Исследованные конечные продукты изучаемого процесса имели максимум КРС при 1575 см-1, что прямо указывает на появление онионоподобных форм углерода на поверхности исследуемых наноалмазных частиц. Установлены отличительные особенности динамики графитизации поверхности углеродных частиц, имеющих различную структурную организацию. Наноалмазные частицы в большей степени, чем микроалмазные, чувствительны к данному процессу, а происходящие с ними изменения носят более глубокий характер. Графитизация нано- и микроалмазных частиц сопровождается переходом углерода поверхности из sp3 в sp2 фазу, а также возникновением различных форм аморфной фазы. Данный процесс характеризуется появлениями и накоплением онионоподобных продуктов (onions) графитизации. Особенности графитизации микроалмазов связаны с возникновением онионоподобных протяженных структур значительно больших размеров (до ста нм) и отличающихся микроструктурной организацией, по сравнению с онионами, возникающими из детонационных наноалмазов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Шевченко, Н.В.
Горбачев, В.А.
Чобанян, В.А.
Сигалаев, С.К.
Ризаханов, Р.Н.
Высотина, Е.А.
Бланк, В.Д.
Голубев, А.А.

Динамика графитизации поверхности детонационных нано- и микроалмазов [Текст] / Н. В. Шевченко [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(11).- С.25-30

7.

Динамика графитизации поверхности детонационных нано- и микроалмазов [Текст] / Н. В. Шевченко [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(11).- С.25-30


24.54
Д 46


    Динамика графитизации поверхности детонационных нано- и микроалмазов [Текст] / Н. В. Шевченко [и др.] // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(11). - С. 25-30
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
детонационный синтез -- детонационные наноалмазы -- микроалмазы -- фазовый состав углерода -- графитизация -- онионы -- рентгенофазовый анализ -- рентгенофазовый анализ -- комбинационное рассеяние света -- химия
Аннотация: Исследованы характеристические особенности, свойства и фазовый состав поверхности нано- и микрокристаллов алмаза детонационного синтеза, подвергнутых графитизации. Закономерности протекания данного процесса и накопление продуктов графитизации были изучены путем применения комбинационного рассеяния света (КРС), электронной микроскопией и рентгенофазного анализа образцов микропорошков. В качестве объектов исследований были использованы образцы химически очищенных детонационных нано- и микроалмазов, полученных методом детонационного синтеза. Использованные образцы углеродных частиц исследованы в диапазоне температур 20 – 1500 °С, в атмосфере инертного газа, при различных скоростях нагревания объекта. Графитизация наноалмазов характеризуется строгими этапными превращениями, связанными с ростом КРС интенсивности пиков КРС (1350 и 1610 см-1), характеризующими графитизацию, связанную с появлением и накоплением sp2-типа углеродных связей. Регистрируемые проявления КРС связанны с появлением и накоплением кристаллических и аморфных продуктов наноалмазной графитизации. Исследованные конечные продукты изучаемого процесса имели максимум КРС при 1575 см-1, что прямо указывает на появление онионоподобных форм углерода на поверхности исследуемых наноалмазных частиц. Установлены отличительные особенности динамики графитизации поверхности углеродных частиц, имеющих различную структурную организацию. Наноалмазные частицы в большей степени, чем микроалмазные, чувствительны к данному процессу, а происходящие с ними изменения носят более глубокий характер. Графитизация нано- и микроалмазных частиц сопровождается переходом углерода поверхности из sp3 в sp2 фазу, а также возникновением различных форм аморфной фазы. Данный процесс характеризуется появлениями и накоплением онионоподобных продуктов (onions) графитизации. Особенности графитизации микроалмазов связаны с возникновением онионоподобных протяженных структур значительно больших размеров (до ста нм) и отличающихся микроструктурной организацией, по сравнению с онионами, возникающими из детонационных наноалмазов.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Шевченко, Н.В.
Горбачев, В.А.
Чобанян, В.А.
Сигалаев, С.К.
Ризаханов, Р.Н.
Высотина, Е.А.
Бланк, В.Д.
Голубев, А.А.

24.54
S90


    Study of poisoning and regeneration of catalytic converters of toxic components of exhaust gases from industrial enterprises and vehicles [Текст] / B. Kh. Khusain, A. R. Brodskiy, A. S. Sass [и др.] // Доклады национальной академии наук Республики Казахстан. - 2021. - №4. - Р. 143-149
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
катализ -- каталитические преобразователи -- физико-химические свойства
Аннотация: Проведено исследование влияния кислородных соединений серы на платиносодержащую систему в каталитических нейтрализаторах вредных компонентов выхлопных газов автотранспорта и промышленных предприятий. Рассматриваются процессы их отравления и регенерации. В результате проведенных исследований удалось показать, что в случае регенерации катализатора “осерненного” соединениями серы при прогреве в токе воздуха при 600 оС происходит значительное уменьшение количества серы в катализаторе, т.е. ее удаление, а сам катализатор способен восстанавливать свою активность. Небольшая часть серы, оставшаяся в катализаторе, исходя из данных ИК-спектроскопии, вероятней всего, является сульфатом алюминия - как продукт взаимодействия с оксидом алюминия вторичного носителя. Для полного удаления серы, по-видимому, необходимо восстановить катализатор в токе водорода при температуре ~ 500 оС. При, этом сера из сульфатов будет удаляться в виде H2S, а сульфат алюминия вновь переходить в оксид. Эту операцию по восстановлению оксидов серы, вероятно, можно провести, минуя стадию окисления, но при этом будет сложнее удалять продукты органических уплотнений.
Держатели документа:
ЗКУ
Доп.точки доступа:
Khusain, B.Kh.
Brodskiy, A.R.
Sass, A.S.
Yaskevich, V.I.
Rahmetova, K.S.

Study of poisoning and regeneration of catalytic converters of toxic components of exhaust gases from industrial enterprises and vehicles [Текст] / B. Kh. Khusain, A. R. Brodskiy, A. S. Sass [и др.] // Доклады национальной академии наук Республики Казахстан. - 2021. - №4.- Р.143-149

8.

Study of poisoning and regeneration of catalytic converters of toxic components of exhaust gases from industrial enterprises and vehicles [Текст] / B. Kh. Khusain, A. R. Brodskiy, A. S. Sass [и др.] // Доклады национальной академии наук Республики Казахстан. - 2021. - №4.- Р.143-149


24.54
S90


    Study of poisoning and regeneration of catalytic converters of toxic components of exhaust gases from industrial enterprises and vehicles [Текст] / B. Kh. Khusain, A. R. Brodskiy, A. S. Sass [и др.] // Доклады национальной академии наук Республики Казахстан. - 2021. - №4. - Р. 143-149
ББК 24.54

Рубрики: Химическая кинетика. Горение, детонация и взрывы. Катализ

Кл.слова (ненормированные):
катализ -- каталитические преобразователи -- физико-химические свойства
Аннотация: Проведено исследование влияния кислородных соединений серы на платиносодержащую систему в каталитических нейтрализаторах вредных компонентов выхлопных газов автотранспорта и промышленных предприятий. Рассматриваются процессы их отравления и регенерации. В результате проведенных исследований удалось показать, что в случае регенерации катализатора “осерненного” соединениями серы при прогреве в токе воздуха при 600 оС происходит значительное уменьшение количества серы в катализаторе, т.е. ее удаление, а сам катализатор способен восстанавливать свою активность. Небольшая часть серы, оставшаяся в катализаторе, исходя из данных ИК-спектроскопии, вероятней всего, является сульфатом алюминия - как продукт взаимодействия с оксидом алюминия вторичного носителя. Для полного удаления серы, по-видимому, необходимо восстановить катализатор в токе водорода при температуре ~ 500 оС. При, этом сера из сульфатов будет удаляться в виде H2S, а сульфат алюминия вновь переходить в оксид. Эту операцию по восстановлению оксидов серы, вероятно, можно провести, минуя стадию окисления, но при этом будет сложнее удалять продукты органических уплотнений.
Держатели документа:
ЗКУ
Доп.точки доступа:
Khusain, B.Kh.
Brodskiy, A.R.
Sass, A.S.
Yaskevich, V.I.
Rahmetova, K.S.

Страница 1, Результатов: 8

 

Все поступления за 
Или выберите интересующий месяц