База данных: Статьи
Страница 1, Результатов: 2
Отмеченные записи: 0
1.

Подробнее
22.1
О 13
About single operator method of solution of a singularly perturbed Сauchy problem for an ordinary differential equation n – order [Текст] = Об одном операторном методе решения сингулярно возмущенной задачи Коши для обыкновенного дифференциального уравнения n-го порядка / M. I. Akylbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 17-36
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
Сингулярное возмущение -- спектральное разложение -- отклоняющиеся аргумент -- оценка остаточного члена -- самосопряженный оператор -- теорема Гилберта - Шмидта -- вполне непрерывный оператор -- лемма Фридрихса -- задача Коши -- асимптотическое разложение -- малый параметр -- математика
Аннотация: В настоящей работе, методом отклоняющегося аргумента, получено асимптотическое разложение решения задачи Коши для обыкновенного дифференциального уравнения ݊ െ го порядка с переменными коэффициентами, с оценкой остаточного члена через правую часть уравнения. Многие работы посвященные к этой теме носят прикладной характер, и полученные им оценки остаточного члена выражены в терминах ܱ െбольшое, или െмалое, поэтому имеют теоретическое значение, нежели прикладное, как они утверждают.Основным достойнством предлагаемого нами метода яяляется простота его алгортитма, и формула остаточного члена, явно выраженная через правую часть уравнения, и его оценка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Akylbayev, M.I.
Shaldanbayev, A.Sh.
Orazov, I.
Beysebayeva, A.
О 13
About single operator method of solution of a singularly perturbed Сauchy problem for an ordinary differential equation n – order [Текст] = Об одном операторном методе решения сингулярно возмущенной задачи Коши для обыкновенного дифференциального уравнения n-го порядка / M. I. Akylbayev [et al.] // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 17-36
Рубрики: Математика
Кл.слова (ненормированные):
Сингулярное возмущение -- спектральное разложение -- отклоняющиеся аргумент -- оценка остаточного члена -- самосопряженный оператор -- теорема Гилберта - Шмидта -- вполне непрерывный оператор -- лемма Фридрихса -- задача Коши -- асимптотическое разложение -- малый параметр -- математика
Аннотация: В настоящей работе, методом отклоняющегося аргумента, получено асимптотическое разложение решения задачи Коши для обыкновенного дифференциального уравнения ݊ െ го порядка с переменными коэффициентами, с оценкой остаточного члена через правую часть уравнения. Многие работы посвященные к этой теме носят прикладной характер, и полученные им оценки остаточного члена выражены в терминах ܱ െбольшое, или െмалое, поэтому имеют теоретическое значение, нежели прикладное, как они утверждают.Основным достойнством предлагаемого нами метода яяляется простота его алгортитма, и формула остаточного члена, явно выраженная через правую часть уравнения, и его оценка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Akylbayev, M.I.
Shaldanbayev, A.Sh.
Orazov, I.
Beysebayeva, A.
2.

Подробнее
22.1
Ш 18
Shaldanbayev, A.Sh.
On projectional orthogonal basis of a linear non-self -adjoint operator [Текст] = О проекционно ортогональном базисе линейного несамосопряженного оператора / A.Sh. Shaldanbayev, A.A. Shaldanbayeva, B.A. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 79-89
ББК 22.1
Рубрики: Физика
Кл.слова (ненормированные):
Линейный несамосопряженный оператор -- вещественный спектр -- базис -- корневые векторы -- полнота -- теория электрических сигналов -- теория плазмы -- дискретный оператор -- инвариантные подпространства -- корневые подпространства -- вполне непрерывный оператор -- собственные и присоединенные векторы -- внутренняя симметрия -- проектор -- резольвента -- математика
Аннотация: В настоящей работе исследованы спектральные свойства линейного несамосопряженного оператора обладающего внутренней симметрией вида L = L*P, LQ = QL ; где P* = P, Q* = Q - ортогональные проекторы, L* - оператор, сопряженный к оператору L в гильбертовом пространстве H .Показан, что спектр такого оператора вещественный. В случае дискретного оператора, с полной системой собственных и присоединенных векторов, проекций собственных и присоединенных векторов оператора L и его сопряженного образуют ортонормированный базис. Найден класс операторов Штурма – Лиувилля, обладающий такой симметрией, при этом обнаружено, что характеристическая функция такого оператора факторизуется. Приведен иллюстративный пример.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayeva, A.A.
Shaldanbay, B.A.
Ш 18
Shaldanbayev, A.Sh.
On projectional orthogonal basis of a linear non-self -adjoint operator [Текст] = О проекционно ортогональном базисе линейного несамосопряженного оператора / A.Sh. Shaldanbayev, A.A. Shaldanbayeva, B.A. Shaldanbay // Известия НАН РК. Серия физико-математическая. - 2019. - №2. - С. 79-89
Рубрики: Физика
Кл.слова (ненормированные):
Линейный несамосопряженный оператор -- вещественный спектр -- базис -- корневые векторы -- полнота -- теория электрических сигналов -- теория плазмы -- дискретный оператор -- инвариантные подпространства -- корневые подпространства -- вполне непрерывный оператор -- собственные и присоединенные векторы -- внутренняя симметрия -- проектор -- резольвента -- математика
Аннотация: В настоящей работе исследованы спектральные свойства линейного несамосопряженного оператора обладающего внутренней симметрией вида L = L*P, LQ = QL ; где P* = P, Q* = Q - ортогональные проекторы, L* - оператор, сопряженный к оператору L в гильбертовом пространстве H .Показан, что спектр такого оператора вещественный. В случае дискретного оператора, с полной системой собственных и присоединенных векторов, проекций собственных и присоединенных векторов оператора L и его сопряженного образуют ортонормированный базис. Найден класс операторов Штурма – Лиувилля, обладающий такой симметрией, при этом обнаружено, что характеристическая функция такого оператора факторизуется. Приведен иллюстративный пример.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Shaldanbayeva, A.A.
Shaldanbay, B.A.
Страница 1, Результатов: 2