База данных: Статьи
Страница 1, Результатов: 1
Отмеченные записи: 0
1.

Подробнее
22.1
И 97
Ишкин, Х. К.
О классе потенциалов с тривиальной монодромией [Текст] / Х. К. Ишкин, А. Д. Ахметшина // Әл-Фараби атындағы Қазақ ұлттық университетi=Вестник Казахского национального университета имени Аль-Фараби. - 2018. - №3. - С. 43-52. - (Математика, механика, информатика сериясы=Серия математика, механика, информатика)
ББК 22.1
Рубрики: Математика
Кл.слова (ненормированные):
спектральная неустойчивость -- локализация спектра -- уравнение Штурма–Лиувилля -- тривиальная монодромия -- комплексная переменная -- дифференциальные операторы -- теория регуляризованных следов -- асимптотика -- дифференциальное выражение -- теорема -- произвольная функция -- многочлены -- многочлены
Аннотация: Рассматривается задача описания класса TM(Ω;A) потенциалов, мероморфных в односвязной области Ω, с множеством полюсов A, удовлетворяющих условию тривиальной монодромии: любое решение соответствующего уравнения Штурма–Лиувилля при всех значениях спектрального параметра не имеет точек ветвления ни в одной точке A. Показано, что в случае конечного A линейное (относительно обычного сложения) пространство TM(Ω;A) имеет конечную размерность по модулю подпространства TM0(Ω;A) функций, голоморфных в Ω и имеющих в точках нули заданной кратности (своей для каждой точки). Тем самым при конечном A получено полное описание TM(Ω; A;M) в терминах любого конечного набора функций – решений интерполяционной задачи с кратными узлами в точках множества A. Полученный результат обобщает известные результаты о классах потенциалов с тривиальной монодромией на всей плоскости, убывающих на бесконечности (J.J. Duistermaat, F.A. Gr¨unbaum) или растущих не быстрее второй (А.А. Обломков) либо шестой (J. Gibbons, A.P. Veselov) степени. В случае, когда множество A счетно и имеет единственную предельную точку, построен достаточно широкий класс функций, удовлетворяющих условию тривиальной монодромии.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Ахметшина, А.Д.
И 97
Ишкин, Х. К.
О классе потенциалов с тривиальной монодромией [Текст] / Х. К. Ишкин, А. Д. Ахметшина // Әл-Фараби атындағы Қазақ ұлттық университетi=Вестник Казахского национального университета имени Аль-Фараби. - 2018. - №3. - С. 43-52. - (Математика, механика, информатика сериясы=Серия математика, механика, информатика)
Рубрики: Математика
Кл.слова (ненормированные):
спектральная неустойчивость -- локализация спектра -- уравнение Штурма–Лиувилля -- тривиальная монодромия -- комплексная переменная -- дифференциальные операторы -- теория регуляризованных следов -- асимптотика -- дифференциальное выражение -- теорема -- произвольная функция -- многочлены -- многочлены
Аннотация: Рассматривается задача описания класса TM(Ω;A) потенциалов, мероморфных в односвязной области Ω, с множеством полюсов A, удовлетворяющих условию тривиальной монодромии: любое решение соответствующего уравнения Штурма–Лиувилля при всех значениях спектрального параметра не имеет точек ветвления ни в одной точке A. Показано, что в случае конечного A линейное (относительно обычного сложения) пространство TM(Ω;A) имеет конечную размерность по модулю подпространства TM0(Ω;A) функций, голоморфных в Ω и имеющих в точках нули заданной кратности (своей для каждой точки). Тем самым при конечном A получено полное описание TM(Ω; A;M) в терминах любого конечного набора функций – решений интерполяционной задачи с кратными узлами в точках множества A. Полученный результат обобщает известные результаты о классах потенциалов с тривиальной монодромией на всей плоскости, убывающих на бесконечности (J.J. Duistermaat, F.A. Gr¨unbaum) или растущих не быстрее второй (А.А. Обломков) либо шестой (J. Gibbons, A.P. Veselov) степени. В случае, когда множество A счетно и имеет единственную предельную точку, построен достаточно широкий класс функций, удовлетворяющих условию тривиальной монодромии.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Ахметшина, А.Д.
Страница 1, Результатов: 1