Электронный каталог


 

База данных: Статьи

Страница 1, Результатов: 1

Отмеченные записи: 0

32.973
M23

Mamyrbayev, O. Zh.
    Realization of online systems for automatic speech recognition. [Текст] / O. Zh. Mamyrbayev, D. O. Oralbekova, K. Alimhan, M. Othman, B. Zhumazhanov // News of national academy of sciences of the republic of Kazakhstan. - 2021. - №6. - P. 66-72
ББК 32.973

Рубрики: information Technology

Кл.слова (ненормированные):
automatic speech recognition -- monotonic chunkwise attention -- neural transducer -- RNN-T -- end-to-end
Аннотация: This article provides a detailed overview of popular online-based models for E2Esystems such as RNN-T, Neural Transducer (NT), Monotonic Chunkwise Attention (MoChA). Systems based on these models have been trained to recognize Kazakh speech. The results obtained showed that all three models work well for recognizing Kazakh speech without the use of external additions
Держатели документа:
WKU
Доп.точки доступа:
Oralbekova, D.O.
Alimhan, K.
Othman, M.
Zhumazhanov, B.

Mamyrbayev, O.Zh. Realization of online systems for automatic speech recognition. [Текст] / O. Zh. Mamyrbayev, D. O. Oralbekova, K. Alimhan, M. Othman, B. Zhumazhanov // News of national academy of sciences of the republic of Kazakhstan. - 2021. - №6.- P.66-72

1.

Mamyrbayev, O.Zh. Realization of online systems for automatic speech recognition. [Текст] / O. Zh. Mamyrbayev, D. O. Oralbekova, K. Alimhan, M. Othman, B. Zhumazhanov // News of national academy of sciences of the republic of Kazakhstan. - 2021. - №6.- P.66-72


32.973
M23

Mamyrbayev, O. Zh.
    Realization of online systems for automatic speech recognition. [Текст] / O. Zh. Mamyrbayev, D. O. Oralbekova, K. Alimhan, M. Othman, B. Zhumazhanov // News of national academy of sciences of the republic of Kazakhstan. - 2021. - №6. - P. 66-72
ББК 32.973

Рубрики: information Technology

Кл.слова (ненормированные):
automatic speech recognition -- monotonic chunkwise attention -- neural transducer -- RNN-T -- end-to-end
Аннотация: This article provides a detailed overview of popular online-based models for E2Esystems such as RNN-T, Neural Transducer (NT), Monotonic Chunkwise Attention (MoChA). Systems based on these models have been trained to recognize Kazakh speech. The results obtained showed that all three models work well for recognizing Kazakh speech without the use of external additions
Держатели документа:
WKU
Доп.точки доступа:
Oralbekova, D.O.
Alimhan, K.
Othman, M.
Zhumazhanov, B.

Страница 1, Результатов: 1

 

Все поступления за 
Или выберите интересующий месяц