База данных: Статьи
Страница 1, Результатов: 2
Отмеченные записи: 0
1.

Подробнее
24.6
А 32
Адсорбция паров бензола, ацетона и тетрахлорметана на микропористом углеродном адсорбенте ФАС-3 [Текст] / Д. С. Зайцев [и др.] // Известия высших учебных заведений. - Иваново, 2019. - №7. - С. 52-57. - (Серия химия и химическая технология)
ББК 24.6
Рубрики: Коллоидная химия
Кл.слова (ненормированные):
адсорбция -- адсорбент -- бензол -- ацетон -- четырёххлористый углерод -- микропористый углеродный адсорбент -- коллоидная химия -- органические вещества -- традиционные поглотители -- ацетон
Аннотация: В настоящей работе проведено исследование адсорбции паров органических веществ (бензол, четыреххлористый углерод, ацетон) на микропористом углеродном адсорбенте ФАС-3 в области давлений от 0,1 Па до 0,1 МПа и температур от 293 до 313 К, показавшее достаточно высокие адсорбционные характеристики использованного адсорбента по сравнению с традиционными поглотителями. Микропористый углеродный адсорбент ФАС-3 является достаточно новым и до сих пор не до конца изученным. Целью данного исследования было определение параметров адсорбента ФАС-3, а также изучение процессов адсорбции паров различных органических веществ на нем. В работе был использован микропористый углеродный адсорбент ФАС-3, полученный на основе фурфурола. Получение сферических гранул адсорбента ФАС-3 осуществлялось в результате жидкостного формования сополимера фурфурола и эпоксидной смолы на основе принципиально нового процесса совмещения стадий осмоления мономера, формования смеси в сферический продукт и отверждения гранул. Активацию сферических зерен ФАС-3 осуществляли во вращающейся печи смесью водяного пара и углекислого газа при температуре 850–900 °С до обгара, что соответствовало развитию пористости в адсорбенте. Равновесные величины адсорбции паров веществ на ФАС-3 были измерены на гравиметрической вакуумной установке, разработанной в ИФХЭ РАН. Регенерацию адсорбента проводили в течение 6 ч при температуре 623 К до давления 0,1 Па. Максимальная абсолютная погрешность измерения составила ± 0,01 ммоль/г с доверительной вероятностью 95 %. Измерение давлений паров органических веществ в пределах 0,13 Па–0,31 МПа осуществляли манометрами абсолютного давления М10, М1000, разработанными и изготовленными в ИФХЭ РАН. Погрешность измерения давлений манометром М10 в интервале 0,13 до 1 330 Па составила ±0,066 Па, а манометром М1000 в интервале от 13 Па до 130 кПа была ±4,0 Па.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Зайцев, Д.С.
Твардовский, А.В.
Школин, А.В.
Фомкин, А.А.
А 32
Адсорбция паров бензола, ацетона и тетрахлорметана на микропористом углеродном адсорбенте ФАС-3 [Текст] / Д. С. Зайцев [и др.] // Известия высших учебных заведений. - Иваново, 2019. - №7. - С. 52-57. - (Серия химия и химическая технология)
Рубрики: Коллоидная химия
Кл.слова (ненормированные):
адсорбция -- адсорбент -- бензол -- ацетон -- четырёххлористый углерод -- микропористый углеродный адсорбент -- коллоидная химия -- органические вещества -- традиционные поглотители -- ацетон
Аннотация: В настоящей работе проведено исследование адсорбции паров органических веществ (бензол, четыреххлористый углерод, ацетон) на микропористом углеродном адсорбенте ФАС-3 в области давлений от 0,1 Па до 0,1 МПа и температур от 293 до 313 К, показавшее достаточно высокие адсорбционные характеристики использованного адсорбента по сравнению с традиционными поглотителями. Микропористый углеродный адсорбент ФАС-3 является достаточно новым и до сих пор не до конца изученным. Целью данного исследования было определение параметров адсорбента ФАС-3, а также изучение процессов адсорбции паров различных органических веществ на нем. В работе был использован микропористый углеродный адсорбент ФАС-3, полученный на основе фурфурола. Получение сферических гранул адсорбента ФАС-3 осуществлялось в результате жидкостного формования сополимера фурфурола и эпоксидной смолы на основе принципиально нового процесса совмещения стадий осмоления мономера, формования смеси в сферический продукт и отверждения гранул. Активацию сферических зерен ФАС-3 осуществляли во вращающейся печи смесью водяного пара и углекислого газа при температуре 850–900 °С до обгара, что соответствовало развитию пористости в адсорбенте. Равновесные величины адсорбции паров веществ на ФАС-3 были измерены на гравиметрической вакуумной установке, разработанной в ИФХЭ РАН. Регенерацию адсорбента проводили в течение 6 ч при температуре 623 К до давления 0,1 Па. Максимальная абсолютная погрешность измерения составила ± 0,01 ммоль/г с доверительной вероятностью 95 %. Измерение давлений паров органических веществ в пределах 0,13 Па–0,31 МПа осуществляли манометрами абсолютного давления М10, М1000, разработанными и изготовленными в ИФХЭ РАН. Погрешность измерения давлений манометром М10 в интервале 0,13 до 1 330 Па составила ±0,066 Па, а манометром М1000 в интервале от 13 Па до 130 кПа была ±4,0 Па.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Зайцев, Д.С.
Твардовский, А.В.
Школин, А.В.
Фомкин, А.А.
2.

Подробнее
24
К 32
Квантово-химическое моделирование адсорбции тетрахлорметана и продуктов его гидродехлорирования на поверхности кластеров палладия [Текст] / П. А. Калмыков [и др.] // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4). - С. 95-102
ББК 24
Рубрики: Химические науки
Кл.слова (ненормированные):
гидродехлорирование -- тетрахлорметан -- трихлорметан -- дихлорметан -- катализаторы гидродегалогенирования -- палладийсодержащие наноалмазы -- квантово-химические расчеты -- химия
Аннотация: Проведено жидкофазное гидродехлорирование тетрахлорметана в присутствии палладийсодержащих катализаторов на основе наноалмазов (1 мас. % Pd/НА) и активированного угля (1 мас. % Pd/С) в мягких условиях (растворитель – этанол, Т = 318 K, Рн2 = 0,1 МПа). Катализатор 1 мас. % Pd/НА оказался более активным (TOF = 3,5 мин–1) по сравнению с катализатором на основе активированного угля (TOF = 2,5 мин–1). Согласно данным газо-жидкостной хроматографии, процесс гидродехлорирования протекает ступенчато с образованием трихлорметана и дихлорметана, однако продукты гидродехлорирования не сразу поступают в реакционную массу, а остаются на поверхности катализатора и подвергаются дальнейшим превращениям. Степень конверсии тетрахлорметана возрастает нелинейно и достигает порядка 70-80% в зависимости от природы катализатора после 5 ч реакции. Квантово-химическим методом (DFT/PBE/LANL2DZ) проведено моделирование адсорбции молекул тетрахлорметана и продуктов реакции (моно-, ди-, трихлорметанов и метана) на поверхности активных центров катализатора – кластера Pd13. В комплексах Pd13+субстрат геометрия кластера Pd13 изменяется незначительно: увеличились длины связей Pd–Pd, участвующие во взаимодействии с атомами хлора субстратов. Более существенно меняется геометрия субстратов: связи С–Cl(Н), участвующие во взаимодействии с атомами палладия, удлиняются от 0,010 до 0,136 Å. На основании результатов квантово-химических расчетов можно предположить, что на кластере Pd13 возможно образование комплексов Pd13+субстрат с различной энергией адсорбции. При этом, чем больше атомов хлора в молекулах хлорметанов образуют связь с атомами кластера, тем выше значение энергии адсорбции.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Калмыков, П.А.
Лысенок, А.А.
Магдалинова, Н.А.
Клюев, М.В.
К 32
Квантово-химическое моделирование адсорбции тетрахлорметана и продуктов его гидродехлорирования на поверхности кластеров палладия [Текст] / П. А. Калмыков [и др.] // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4). - С. 95-102
Рубрики: Химические науки
Кл.слова (ненормированные):
гидродехлорирование -- тетрахлорметан -- трихлорметан -- дихлорметан -- катализаторы гидродегалогенирования -- палладийсодержащие наноалмазы -- квантово-химические расчеты -- химия
Аннотация: Проведено жидкофазное гидродехлорирование тетрахлорметана в присутствии палладийсодержащих катализаторов на основе наноалмазов (1 мас. % Pd/НА) и активированного угля (1 мас. % Pd/С) в мягких условиях (растворитель – этанол, Т = 318 K, Рн2 = 0,1 МПа). Катализатор 1 мас. % Pd/НА оказался более активным (TOF = 3,5 мин–1) по сравнению с катализатором на основе активированного угля (TOF = 2,5 мин–1). Согласно данным газо-жидкостной хроматографии, процесс гидродехлорирования протекает ступенчато с образованием трихлорметана и дихлорметана, однако продукты гидродехлорирования не сразу поступают в реакционную массу, а остаются на поверхности катализатора и подвергаются дальнейшим превращениям. Степень конверсии тетрахлорметана возрастает нелинейно и достигает порядка 70-80% в зависимости от природы катализатора после 5 ч реакции. Квантово-химическим методом (DFT/PBE/LANL2DZ) проведено моделирование адсорбции молекул тетрахлорметана и продуктов реакции (моно-, ди-, трихлорметанов и метана) на поверхности активных центров катализатора – кластера Pd13. В комплексах Pd13+субстрат геометрия кластера Pd13 изменяется незначительно: увеличились длины связей Pd–Pd, участвующие во взаимодействии с атомами хлора субстратов. Более существенно меняется геометрия субстратов: связи С–Cl(Н), участвующие во взаимодействии с атомами палладия, удлиняются от 0,010 до 0,136 Å. На основании результатов квантово-химических расчетов можно предположить, что на кластере Pd13 возможно образование комплексов Pd13+субстрат с различной энергией адсорбции. При этом, чем больше атомов хлора в молекулах хлорметанов образуют связь с атомами кластера, тем выше значение энергии адсорбции.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Калмыков, П.А.
Лысенок, А.А.
Магдалинова, Н.А.
Клюев, М.В.
Страница 1, Результатов: 2