Электронный каталог


 

База данных: Статьи

Страница 1, Результатов: 3

Отмеченные записи: 0

22.1
M75

Mirzakulova, A. E
    The Cauchy problem for sinqularly perturbed hiqher-order inteqro-differential equations [Текст] / A.E Mirzakulova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КАЗНУ им Аль - Фараби. - Алматы, 2018. - №1(97). - Р. 14-24. - (Математика, механика, информатика сериясы = Серия математика, механика, информатика)
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
сингулярное возмущение -- малый параметр -- начальные функции -- асимптотика -- предельный переход
Аннотация: The article is devoted to research the Cauchy problem for singularly perturbed higher-order linearintegro-differential equation with a small parameter at the highest derivatives, provided that theroots of additional characteristic equation have negative signs. The aim of this paper is to bringasymptotic estimation of the solution of a singularly perturbed Cauchy problem and the asymptoticconvergence of the solution of a singularly perturbed initial value problem to the solution ofan unperturbed initial value problem. In this paper the fundamental system of solutions, initialfunctions of a singularly perturbed homogeneous differential equation are constructed and theirasymptotic estimates are obtained. By using the initial functions, we obtain an explicit analyticalformula of the solution. The theorem about asymptotic estimate of a solution of the initial valueproblem is proved. The unperturbed Cauchy problem is constructed. We find the solution of theunperturbed Cauchy problem. An estimate difference of the solution of a singularly perturbedand unperturbed initial value problems. The asymptotic convergence of solution of a singularlyperturbed initial value problem to the solution of the unperturbed initial value problem is proved.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Dauylbaev, M.K
Akhmet, M.U
Dzhetpisbaeva, A.K

Mirzakulova, A.E The Cauchy problem for sinqularly perturbed hiqher-order inteqro-differential equations [Текст] / A.E Mirzakulova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КАЗНУ им Аль - Фараби. - Алматы, 2018. - №1(97).- Р.14-24

1.

Mirzakulova, A.E The Cauchy problem for sinqularly perturbed hiqher-order inteqro-differential equations [Текст] / A.E Mirzakulova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КАЗНУ им Аль - Фараби. - Алматы, 2018. - №1(97).- Р.14-24


22.1
M75

Mirzakulova, A. E
    The Cauchy problem for sinqularly perturbed hiqher-order inteqro-differential equations [Текст] / A.E Mirzakulova // Әл - Фараби ат. ҚҰУ Хабаршы = Вестник КАЗНУ им Аль - Фараби. - Алматы, 2018. - №1(97). - Р. 14-24. - (Математика, механика, информатика сериясы = Серия математика, механика, информатика)
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
сингулярное возмущение -- малый параметр -- начальные функции -- асимптотика -- предельный переход
Аннотация: The article is devoted to research the Cauchy problem for singularly perturbed higher-order linearintegro-differential equation with a small parameter at the highest derivatives, provided that theroots of additional characteristic equation have negative signs. The aim of this paper is to bringasymptotic estimation of the solution of a singularly perturbed Cauchy problem and the asymptoticconvergence of the solution of a singularly perturbed initial value problem to the solution ofan unperturbed initial value problem. In this paper the fundamental system of solutions, initialfunctions of a singularly perturbed homogeneous differential equation are constructed and theirasymptotic estimates are obtained. By using the initial functions, we obtain an explicit analyticalformula of the solution. The theorem about asymptotic estimate of a solution of the initial valueproblem is proved. The unperturbed Cauchy problem is constructed. We find the solution of theunperturbed Cauchy problem. An estimate difference of the solution of a singularly perturbedand unperturbed initial value problems. The asymptotic convergence of solution of a singularlyperturbed initial value problem to the solution of the unperturbed initial value problem is proved.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Dauylbaev, M.K
Akhmet, M.U
Dzhetpisbaeva, A.K

22.151
A12

Abylkasymova, E. A.
    Weak convergence of integral curvatures of convex surfaces [Текст] / E. A. Abylkasymova, G. I. Beysenova, U. P. Suiinzhanova // News of the National Academy Ofsciences of the Republic of Kazakhstan. - 2020. - №4. - P. 13-20
ББК 22.151

Рубрики: Geometry

Кл.слова (ненормированные):
convex surface -- convex surfaces in euclidean space -- monge-ampere equation -- the cone of convex surfaces in the space of continuous functions -- conditional curvature -- integral curvature -- restoration of surface
Аннотация: The article contains a concentrated analysis of the existing information on the main problems of the theory of convex surfaces and differential geomety in general and is devoted to the problems of the reconstructing convex surfaces from the information about their curvature studied by the topological methods of the functional analysis.
Держатели документа:
WKU
Доп.точки доступа:
Beysenova, G.I.
Suiinzhanova, U.P.

Abylkasymova, E.A. Weak convergence of integral curvatures of convex surfaces [Текст] / E. A. Abylkasymova, G. I. Beysenova, U. P. Suiinzhanova // News of the National Academy Ofsciences of the Republic of Kazakhstan. - 2020. - №4.- P.13-20

2.

Abylkasymova, E.A. Weak convergence of integral curvatures of convex surfaces [Текст] / E. A. Abylkasymova, G. I. Beysenova, U. P. Suiinzhanova // News of the National Academy Ofsciences of the Republic of Kazakhstan. - 2020. - №4.- P.13-20


22.151
A12

Abylkasymova, E. A.
    Weak convergence of integral curvatures of convex surfaces [Текст] / E. A. Abylkasymova, G. I. Beysenova, U. P. Suiinzhanova // News of the National Academy Ofsciences of the Republic of Kazakhstan. - 2020. - №4. - P. 13-20
ББК 22.151

Рубрики: Geometry

Кл.слова (ненормированные):
convex surface -- convex surfaces in euclidean space -- monge-ampere equation -- the cone of convex surfaces in the space of continuous functions -- conditional curvature -- integral curvature -- restoration of surface
Аннотация: The article contains a concentrated analysis of the existing information on the main problems of the theory of convex surfaces and differential geomety in general and is devoted to the problems of the reconstructing convex surfaces from the information about their curvature studied by the topological methods of the functional analysis.
Держатели документа:
WKU
Доп.точки доступа:
Beysenova, G.I.
Suiinzhanova, U.P.

22.1
A36

Alimbekova, N. B.
    Numerical implementation of a nonlinear model of fluid flow in a highly fractured medium by the finite element method [Текст] / N. B. Alimbekova // Вестник национальной инженерной академии Республики Казахстан. - 2021. - №3. - с. 8-16
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
fluid flow in porous media -- finite element method -- fractional derivative in the sense of Caputo-Fabrizio -- Newtons method -- convergence -- computational experiments
Аннотация: The paper presents the research results of the iterative method for solving the nonlinear problem of fluid flow in hihhly porous fractured formations, carried out within the framework of the grant project of the Ministry of Education and Science of the Republic of Kazakhstan No.
Держатели документа:
ЗКУ им М. Утемисова

Alimbekova, N. B. Numerical implementation of a nonlinear model of fluid flow in a highly fractured medium by the finite element method [Текст] / N. B. Alimbekova // Вестник национальной инженерной академии Республики Казахстан. - Алматы, 2021. - №3.- с.8-16

3.

Alimbekova, N. B. Numerical implementation of a nonlinear model of fluid flow in a highly fractured medium by the finite element method [Текст] / N. B. Alimbekova // Вестник национальной инженерной академии Республики Казахстан. - Алматы, 2021. - №3.- с.8-16


22.1
A36

Alimbekova, N. B.
    Numerical implementation of a nonlinear model of fluid flow in a highly fractured medium by the finite element method [Текст] / N. B. Alimbekova // Вестник национальной инженерной академии Республики Казахстан. - 2021. - №3. - с. 8-16
ББК 22.1

Рубрики: Математика

Кл.слова (ненормированные):
fluid flow in porous media -- finite element method -- fractional derivative in the sense of Caputo-Fabrizio -- Newtons method -- convergence -- computational experiments
Аннотация: The paper presents the research results of the iterative method for solving the nonlinear problem of fluid flow in hihhly porous fractured formations, carried out within the framework of the grant project of the Ministry of Education and Science of the Republic of Kazakhstan No.
Держатели документа:
ЗКУ им М. Утемисова

Страница 1, Результатов: 3

 

Все поступления за 
Или выберите интересующий месяц