Электронный каталог


 

База данных: Статьи

Страница 1, Результатов: 7

Отмеченные записи: 0

35.119
Л 61

Липин , А. А.
    Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 98-104
ББК 35.119

Рубрики: Другие процессы химической технологии

Кл.слова (ненормированные):
моделирование -- капсулирование -- тепло- и массоперенос -- степень покрытия -- псевдоожиженный слой -- химия -- химическая технология -- гранула -- фонтанирующий слой
Аннотация: Капсулирование гранул в полимерные оболочки проводится с целью изолирования поверхности частиц от негативного воздействия факторов окружающей среды и регулирования скорости выделения активного компонента. В данной работе капсулирование осуществляется путем распыливания водной дисперсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную плёнку. Удаление растворителя путем сушки приводит к отверждению плёнки. Существующие методы расчета процесса капсулирования в аппаратах с псевдоожиженным слоем частиц не учитывают влияния закономерностей формирования капсулы на протекание тепло-массообменного процесса удаления растворителя из пленки капсулообразующего вещества. Совместное рассмотрение этих процессов позволяет более достоверно прогнозировать требуемое время пребывания капсулируемого материала в аппарате. Разработана математическая модель, позволяющая прогнозировать изменение степени покрытия, влагосодержания капсулируемых частиц, изменения их температуры во времени и требуемое время пребывания в аппарате. Для проверки адекватности разработанной математической модели выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента измерялась температура в псевдоожиженном слое частиц и температура воздуха в сепарационном пространстве над слоем. Измерения проводились во времени процесса прогрева как орошаемого, так и не орошаемого псевдоожиженного слоя частиц. Экспериментально подтверждено, что температура слоя частиц напрямую зависит от соотношения интенсивностей подвода теплоты конвекцией от псевдоожижающего агента и отвода теплоты с испаренной влагой. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что учёт изменения поверхности испарения из-за увеличения степени покрытия частиц в процессе капсулирования позволяет более достоверно прогнозировать изменение параметров частиц и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин , В.О.
Липин , А.Г.

Липин , А.А. Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.98-104

1.

Липин , А.А. Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. Т.61(4-5).- С.98-104


35.119
Л 61

Липин , А. А.
    Моделирование процессов тепломассопереноса при капсулировании гранул в фонтанирующем слое [Текст] / А. А. Липин , В. О. Небукин , А.Г. Липин // Известия высших учебных заведений. Серия: Химия и химическая технология. - 2018. - Т.61(4-5). - С. 98-104
ББК 35.119

Рубрики: Другие процессы химической технологии

Кл.слова (ненормированные):
моделирование -- капсулирование -- тепло- и массоперенос -- степень покрытия -- псевдоожиженный слой -- химия -- химическая технология -- гранула -- фонтанирующий слой
Аннотация: Капсулирование гранул в полимерные оболочки проводится с целью изолирования поверхности частиц от негативного воздействия факторов окружающей среды и регулирования скорости выделения активного компонента. В данной работе капсулирование осуществляется путем распыливания водной дисперсии полимера на частицы псевдоожиженного слоя с помощью пневматических форсунок. Капли капсулянта, столкнувшись с частицами слоя, растекаются по их поверхности, образуя жидкостную плёнку. Удаление растворителя путем сушки приводит к отверждению плёнки. Существующие методы расчета процесса капсулирования в аппаратах с псевдоожиженным слоем частиц не учитывают влияния закономерностей формирования капсулы на протекание тепло-массообменного процесса удаления растворителя из пленки капсулообразующего вещества. Совместное рассмотрение этих процессов позволяет более достоверно прогнозировать требуемое время пребывания капсулируемого материала в аппарате. Разработана математическая модель, позволяющая прогнозировать изменение степени покрытия, влагосодержания капсулируемых частиц, изменения их температуры во времени и требуемое время пребывания в аппарате. Для проверки адекватности разработанной математической модели выполнен физический эксперимент на установке лабораторного масштаба. В ходе эксперимента измерялась температура в псевдоожиженном слое частиц и температура воздуха в сепарационном пространстве над слоем. Измерения проводились во времени процесса прогрева как орошаемого, так и не орошаемого псевдоожиженного слоя частиц. Экспериментально подтверждено, что температура слоя частиц напрямую зависит от соотношения интенсивностей подвода теплоты конвекцией от псевдоожижающего агента и отвода теплоты с испаренной влагой. Выполнено сопоставление расчетных и экспериментальных данных, показавшее их хорошее соответствие. Таким образом, показано, что учёт изменения поверхности испарения из-за увеличения степени покрытия частиц в процессе капсулирования позволяет более достоверно прогнозировать изменение параметров частиц и выбирать рациональные параметры процесса.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Небукин , В.О.
Липин , А.Г.


Афанасьев, А. М.
    Оптимизация сушки электромагнитным излучением: аналитическое исследование проблемы [Текст] / А. М. Афанасьев, Б. Н. Сипливый // Известия высших учебных заведений. - Иваново, 2019. - №6. - С. 69-76. - (Серия химия и химическая технология)

Кл.слова (ненормированные):
уравнения А.В. Лыкова -- сушка электромагнитным излучением -- начально-краевая задача -- аналитическое решение -- оптимизация -- тепломассоперенос -- стационарность температурного поля -- квазистационарность -- электромагнитная сушка -- влагосодержание
Аннотация: Рассмотрен процесс сушки плоского образца электромагнитным излучением. В качестве исходных соотношений использованы уравнения теории тепломассопереноса А.В. Лыкова. Для учета нелинейного характера процесса массообмена поверхности образца с воздушной средой граничные условия для потоков влаги были приняты в виде закона испарения Дальтона. Построено асимптотическое по времени аналитическое ре-шение начально-краевой задачи, характерной особенностью которого являются стацио-нарность температурного поля Т, квазистационарность поля влагосодержания U и постоянство интенсивности сушки J. Наличие таких признаков позволяет говорить, что здесь мы имеем, по аналогии с конвективной сушкой, первый период сушки, или период по-стоянной скорости. Центральным понятием в полученных соотношениях является установившаяся температура поверхности материала Т∞, которая является обобщением понятия температуры мокрого термометра на случай электромагнитной сушки. Поставлена и решена задача оптимизации сушки. Целью оптимизации является организация режимов, в которых поле температуры или/и поле влагосодержания близки к однородным. Это соответствует минимизации целевых функций, в качестве которых выбраны абсолютные значения перепадов температуры и влагосодержания между границами пластины |∆Т| и |∆U|. В качестве параметров оптимизации, варьированием которых минимизируются целевые функции, выбраны интенсивность излучения S и его глубина проникновения ∆. Показано, что оптимальный режим следует выбирать в мягком диапазоне, в котором перепады ∆Т и ∆U имеют одинаковые знаки, а жесткий диапазон, в котором эти перепады имеют противоположные знаки, должен быть исключен из рассмотрения. Одна из границ мягкого диапазона отвечает режиму с ∆Т=0, другая граница – режиму с ∆U=0. Разработан алгоритм расчета параметров оптимизации S и ∆, соответствующих данным режимам, что и позволяет организовать сушку внутри мягкого диапазона. В качестве примера использования разработанного алгоритма проведена оптимизация электромагнитной сушки материала с характеристиками кварцевого песка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Сипливый, Б.Н.

Афанасьев, А.М. Оптимизация сушки электромагнитным излучением: аналитическое исследование проблемы [Текст] / А. М. Афанасьев, Б. Н. Сипливый // Известия высших учебных заведений. - Иваново, 2019. - №6.- С.69-76

2.

Афанасьев, А.М. Оптимизация сушки электромагнитным излучением: аналитическое исследование проблемы [Текст] / А. М. Афанасьев, Б. Н. Сипливый // Известия высших учебных заведений. - Иваново, 2019. - №6.- С.69-76



Афанасьев, А. М.
    Оптимизация сушки электромагнитным излучением: аналитическое исследование проблемы [Текст] / А. М. Афанасьев, Б. Н. Сипливый // Известия высших учебных заведений. - Иваново, 2019. - №6. - С. 69-76. - (Серия химия и химическая технология)

Кл.слова (ненормированные):
уравнения А.В. Лыкова -- сушка электромагнитным излучением -- начально-краевая задача -- аналитическое решение -- оптимизация -- тепломассоперенос -- стационарность температурного поля -- квазистационарность -- электромагнитная сушка -- влагосодержание
Аннотация: Рассмотрен процесс сушки плоского образца электромагнитным излучением. В качестве исходных соотношений использованы уравнения теории тепломассопереноса А.В. Лыкова. Для учета нелинейного характера процесса массообмена поверхности образца с воздушной средой граничные условия для потоков влаги были приняты в виде закона испарения Дальтона. Построено асимптотическое по времени аналитическое ре-шение начально-краевой задачи, характерной особенностью которого являются стацио-нарность температурного поля Т, квазистационарность поля влагосодержания U и постоянство интенсивности сушки J. Наличие таких признаков позволяет говорить, что здесь мы имеем, по аналогии с конвективной сушкой, первый период сушки, или период по-стоянной скорости. Центральным понятием в полученных соотношениях является установившаяся температура поверхности материала Т∞, которая является обобщением понятия температуры мокрого термометра на случай электромагнитной сушки. Поставлена и решена задача оптимизации сушки. Целью оптимизации является организация режимов, в которых поле температуры или/и поле влагосодержания близки к однородным. Это соответствует минимизации целевых функций, в качестве которых выбраны абсолютные значения перепадов температуры и влагосодержания между границами пластины |∆Т| и |∆U|. В качестве параметров оптимизации, варьированием которых минимизируются целевые функции, выбраны интенсивность излучения S и его глубина проникновения ∆. Показано, что оптимальный режим следует выбирать в мягком диапазоне, в котором перепады ∆Т и ∆U имеют одинаковые знаки, а жесткий диапазон, в котором эти перепады имеют противоположные знаки, должен быть исключен из рассмотрения. Одна из границ мягкого диапазона отвечает режиму с ∆Т=0, другая граница – режиму с ∆U=0. Разработан алгоритм расчета параметров оптимизации S и ∆, соответствующих данным режимам, что и позволяет организовать сушку внутри мягкого диапазона. В качестве примера использования разработанного алгоритма проведена оптимизация электромагнитной сушки материала с характеристиками кварцевого песка.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Сипливый, Б.Н.

24
О-35

Овчинников, Л. Н.
    Исследование тепломассообмена при конвективной сушке гранул органоминерального удобрения в плотном слое [Текст] / Л. Н. Овчинников, С. И. Медведев // Известия высших учебных заведений. - Иваново, 2019. - №6. - С. 91-97. - (Серия химия и химическая технология)
ББК 24

Рубрики: Химия

Кл.слова (ненормированные):
сушка -- массообмен -- гранула -- удобрение -- критерий -- теплообмен -- влагосодержание -- температура материала -- экспериментальные коэффициенты -- критериальные уравнения -- шервуд -- нуссельт
Аннотация: В работе приведена методика расчета, позволяющая с помощью специально поставленного эксперимента установить количественную зависимость определяемого критерия (величины), например, Шервуда (массообмен), Нуссельта (теплообмен) или влагосодержания частиц от определяющих критериев Рейнольдса, Шмидта, температуры материала и др. Эти связи представлены степенными функциями в виде критериальных уравнений тепломассообмена для выбранного диапазона значений критерия Рейнольдса Reг = 250-500, рассчитанного по газовой фазе. В расчетно-экспериментальном исследовании рассмотрена конвективная сушка нагретым воздухом влажных гранул азотно - фосфорно - калийного (NPK) органоминерального удобрения в плотном слое лабораторной цилиндроконической сушилки. Гранулы имеют цилиндрическую форму с размером частиц 5×5 мм. Методика эксперимента предполагала проведение в периодическом процессе исследований по определению изменения во времени влажности гранул удобрения, температуры газа под решеткой, в слое, над слоем и в частице при различных расходах газового теплоносителя. Обработка результатов экспериментальных исследований, осуществленная с помощью метода наименьших квадратов, позволила рассчитать экспериментальные коэффициенты, входящие в критериальные уравнения. Иллюстративно показано, что коэффициент массоотдачи возрастает с увеличением критерия Рейнольдса вплоть до достижения им значения 0,8 Reкр1.(начало псевдоожижения), соответствующего рациональным условиям сушки гранул. Сравнение расчетных и экспериментальных значений критерия Шервуда, критерия Нуссельта и влагосодержания частиц высушиваемого материала показало их удовлетворительную сходимость в рассматриваемых гидродинамических условиях сушки влажных частиц, что позволяет рекомендовать полученные экспериментальные зависимости к практическому применению.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Медведев, С.И.

Овчинников, Л.Н. Исследование тепломассообмена при конвективной сушке гранул органоминерального удобрения в плотном слое [Текст] / Л. Н. Овчинников, С. И. Медведев // Известия высших учебных заведений. - Иваново, 2019. - №6.- С.91-97

3.

Овчинников, Л.Н. Исследование тепломассообмена при конвективной сушке гранул органоминерального удобрения в плотном слое [Текст] / Л. Н. Овчинников, С. И. Медведев // Известия высших учебных заведений. - Иваново, 2019. - №6.- С.91-97


24
О-35

Овчинников, Л. Н.
    Исследование тепломассообмена при конвективной сушке гранул органоминерального удобрения в плотном слое [Текст] / Л. Н. Овчинников, С. И. Медведев // Известия высших учебных заведений. - Иваново, 2019. - №6. - С. 91-97. - (Серия химия и химическая технология)
ББК 24

Рубрики: Химия

Кл.слова (ненормированные):
сушка -- массообмен -- гранула -- удобрение -- критерий -- теплообмен -- влагосодержание -- температура материала -- экспериментальные коэффициенты -- критериальные уравнения -- шервуд -- нуссельт
Аннотация: В работе приведена методика расчета, позволяющая с помощью специально поставленного эксперимента установить количественную зависимость определяемого критерия (величины), например, Шервуда (массообмен), Нуссельта (теплообмен) или влагосодержания частиц от определяющих критериев Рейнольдса, Шмидта, температуры материала и др. Эти связи представлены степенными функциями в виде критериальных уравнений тепломассообмена для выбранного диапазона значений критерия Рейнольдса Reг = 250-500, рассчитанного по газовой фазе. В расчетно-экспериментальном исследовании рассмотрена конвективная сушка нагретым воздухом влажных гранул азотно - фосфорно - калийного (NPK) органоминерального удобрения в плотном слое лабораторной цилиндроконической сушилки. Гранулы имеют цилиндрическую форму с размером частиц 5×5 мм. Методика эксперимента предполагала проведение в периодическом процессе исследований по определению изменения во времени влажности гранул удобрения, температуры газа под решеткой, в слое, над слоем и в частице при различных расходах газового теплоносителя. Обработка результатов экспериментальных исследований, осуществленная с помощью метода наименьших квадратов, позволила рассчитать экспериментальные коэффициенты, входящие в критериальные уравнения. Иллюстративно показано, что коэффициент массоотдачи возрастает с увеличением критерия Рейнольдса вплоть до достижения им значения 0,8 Reкр1.(начало псевдоожижения), соответствующего рациональным условиям сушки гранул. Сравнение расчетных и экспериментальных значений критерия Шервуда, критерия Нуссельта и влагосодержания частиц высушиваемого материала показало их удовлетворительную сходимость в рассматриваемых гидродинамических условиях сушки влажных частиц, что позволяет рекомендовать полученные экспериментальные зависимости к практическому применению.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Медведев, С.И.

24
Ш 96

Шурдумов, Г. К.
    Об эффекте массообмена систем Mn(Fe,Co)Mo(W)O4–Na2CO3 и окружающей среды и необходимости его учета при идентификации молибдатов и вольфраматов поливалентных d-элементов Мn, Fe, Сo на основе термогравиметрических данных [Текст] / Г. К. Шурдумов, З. А. Черкесов, Л. И. Мокаева // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4). - С. 111-120
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
молибдаты и вольфраматы d-элементов -- реакций обмена -- одновременный обмен систем и окружающей среды двумя разными веществами – СО2 и О2 -- химия
Аннотация: В работе приводятся экспериментальные и расчетные данные по изучению обменных реакций в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 методами термодинамики, термогравиметрии, кинетики топохимических реакций и стехиометрии, анализ и обобщение которых привели к выявлению эффекта массобмена между указанными системами и окружающей средой – явление, характерное для молибдатов (вольфраматов) поливалентных d-элементов (Mn,Fe,Co) в отличие аналогичных производных от постоянновалентных d-элементов (Ni, Zn, Cd, Ag). В ней выявлены генезис и механизм проявления этого явления, которое, как показывают теоретический анализ вопроса и экспериментальные данные, связано с поливалентностью Mn (Fe,Co) и, следовательно, возможностью протекания в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 реакций обмена Mn(Fe,Co)Mo(W)O4+Na2CO3→Mn(Fe,Co)CO3+ +Na2Mo(W)O4, диссоциации Mn(Fe,Co)CO3=Mn(Fe,Co)O+СО2 и окислительно-восстановительных хMn(Fe,Co)O+1/2О2→Mnх(Feх,Coх)Oу, где у=х+1/2О2, приводящих к потере СО2 и преобразованию Mn(Fe,Co)O – продуктов разложения Mn(Fe,Co)СO3 за счет кислорода окружающей среды в оксиды типа Mnх(Feх,Coх)Oу, состав которых определяется температурой процесса. Установлено, что приведенные реакции составляют основу обнаруженного впервые, на взгляд авторов, уникального явления в химии твердого тела молибдатов (вольфраматов) поливалентных d-элементов. Это явление связано с протеканием в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 процессов при их термической обработке. Показано, что последовательные реакции термической диссоциации Mn(Fe,Co)СО3 приводят к потере ими СО2 (уменьшение масс) и окислению образовавшихся Mn(Fe,Co)О кислородом воздуха до Mnх(Feх,Coх)Оу=х+1/2О2 (рост масс): системы – доноры СО2 и акцепторы О2, а среда (воздух) – донор О2 и акцептор СО2. Предложена методология обоснованного выбора той реакции из серии ожидаемых, протекание которой абсолютно достоверно в данных физико-химических условиях.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Черкесов, З.А.
Мокаева, Л.И.

Шурдумов, Г.К. Об эффекте массообмена систем Mn(Fe,Co)Mo(W)O4–Na2CO3 и окружающей среды и необходимости его учета при идентификации молибдатов и вольфраматов поливалентных d-элементов Мn, Fe, Сo на основе термогравиметрических данных [Текст] / Г. К. Шурдумов, З. А. Черкесов, Л. И. Мокаева // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4).- С.111-120

4.

Шурдумов, Г.К. Об эффекте массообмена систем Mn(Fe,Co)Mo(W)O4–Na2CO3 и окружающей среды и необходимости его учета при идентификации молибдатов и вольфраматов поливалентных d-элементов Мn, Fe, Сo на основе термогравиметрических данных [Текст] / Г. К. Шурдумов, З. А. Черкесов, Л. И. Мокаева // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4).- С.111-120


24
Ш 96

Шурдумов, Г. К.
    Об эффекте массообмена систем Mn(Fe,Co)Mo(W)O4–Na2CO3 и окружающей среды и необходимости его учета при идентификации молибдатов и вольфраматов поливалентных d-элементов Мn, Fe, Сo на основе термогравиметрических данных [Текст] / Г. К. Шурдумов, З. А. Черкесов, Л. И. Мокаева // Известия высших учебных заведений. Серия «Химия и химическая технология». - 2019. - Т.62(4). - С. 111-120
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
молибдаты и вольфраматы d-элементов -- реакций обмена -- одновременный обмен систем и окружающей среды двумя разными веществами – СО2 и О2 -- химия
Аннотация: В работе приводятся экспериментальные и расчетные данные по изучению обменных реакций в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 методами термодинамики, термогравиметрии, кинетики топохимических реакций и стехиометрии, анализ и обобщение которых привели к выявлению эффекта массобмена между указанными системами и окружающей средой – явление, характерное для молибдатов (вольфраматов) поливалентных d-элементов (Mn,Fe,Co) в отличие аналогичных производных от постоянновалентных d-элементов (Ni, Zn, Cd, Ag). В ней выявлены генезис и механизм проявления этого явления, которое, как показывают теоретический анализ вопроса и экспериментальные данные, связано с поливалентностью Mn (Fe,Co) и, следовательно, возможностью протекания в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 реакций обмена Mn(Fe,Co)Mo(W)O4+Na2CO3→Mn(Fe,Co)CO3+ +Na2Mo(W)O4, диссоциации Mn(Fe,Co)CO3=Mn(Fe,Co)O+СО2 и окислительно-восстановительных хMn(Fe,Co)O+1/2О2→Mnх(Feх,Coх)Oу, где у=х+1/2О2, приводящих к потере СО2 и преобразованию Mn(Fe,Co)O – продуктов разложения Mn(Fe,Co)СO3 за счет кислорода окружающей среды в оксиды типа Mnх(Feх,Coх)Oу, состав которых определяется температурой процесса. Установлено, что приведенные реакции составляют основу обнаруженного впервые, на взгляд авторов, уникального явления в химии твердого тела молибдатов (вольфраматов) поливалентных d-элементов. Это явление связано с протеканием в системах Mn(Fe,Co)Mo(W)O4–Na2CO3 процессов при их термической обработке. Показано, что последовательные реакции термической диссоциации Mn(Fe,Co)СО3 приводят к потере ими СО2 (уменьшение масс) и окислению образовавшихся Mn(Fe,Co)О кислородом воздуха до Mnх(Feх,Coх)Оу=х+1/2О2 (рост масс): системы – доноры СО2 и акцепторы О2, а среда (воздух) – донор О2 и акцептор СО2. Предложена методология обоснованного выбора той реакции из серии ожидаемых, протекание которой абсолютно достоверно в данных физико-химических условиях.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Черкесов, З.А.
Мокаева, Л.И.

24
Э 41


    Experimental justification of the absorber selection for the process of simultaneous chemisorption of hydrogen sulphide and carbon dioxide [Текст] = Экспериментальное обоснование подбора поглотителя для процесса одновременной хемосорбции сероводорода и углекислого газа / Botagoz M. Kaldybayeva [et al.] // ҚР ҰҒА баяндамалары = Доклады НАН РК. - 2019. - №1. - С. 40-46
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
хемосорбция -- хемосорбер -- поглотитель -- многокомпонентный газ -- массообмен -- микробарботажный процесс -- щелочь -- жидкость -- сероводород -- углекислый газ -- химия
Аннотация: В этой статье объектами исследования являются совмещенные мембранно-абсорбционные процессы с химической реакцией и хемосорбционные установки для очистки многокомпонентных газовых смесей. Предметом исследований явились процессы удаления из многокомпанентных газов Н2S и СО2. Проведены результаты исследования особенностей одновременного поглощения Н2S и СО2 водным раствором NaOH. С последующим анализом и подборам основных параметров процесса извлечения Н2S. При одновременной абсорбции Н2S и СО2установлено, что химическая емкость поглотительного раствора по отношению к Н2S снижается. Рассчитаны константы скорости и концентрации при поглощении Н2S и СО2.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Kaldybayeva, Botagoz M.
Khussanov, Alisher E.
Abilmagzhanov, Arlan Zh.
Boldyryev, Stanislav

Experimental justification of the absorber selection for the process of simultaneous chemisorption of hydrogen sulphide and carbon dioxide [Текст] / Botagoz M. Kaldybayeva [et al.] // ҚР ҰҒА баяндамалары = Доклады НАН РК. - 2019. - №1.- С.40-46

5.

Experimental justification of the absorber selection for the process of simultaneous chemisorption of hydrogen sulphide and carbon dioxide [Текст] / Botagoz M. Kaldybayeva [et al.] // ҚР ҰҒА баяндамалары = Доклады НАН РК. - 2019. - №1.- С.40-46


24
Э 41


    Experimental justification of the absorber selection for the process of simultaneous chemisorption of hydrogen sulphide and carbon dioxide [Текст] = Экспериментальное обоснование подбора поглотителя для процесса одновременной хемосорбции сероводорода и углекислого газа / Botagoz M. Kaldybayeva [et al.] // ҚР ҰҒА баяндамалары = Доклады НАН РК. - 2019. - №1. - С. 40-46
ББК 24

Рубрики: Химические науки

Кл.слова (ненормированные):
хемосорбция -- хемосорбер -- поглотитель -- многокомпонентный газ -- массообмен -- микробарботажный процесс -- щелочь -- жидкость -- сероводород -- углекислый газ -- химия
Аннотация: В этой статье объектами исследования являются совмещенные мембранно-абсорбционные процессы с химической реакцией и хемосорбционные установки для очистки многокомпонентных газовых смесей. Предметом исследований явились процессы удаления из многокомпанентных газов Н2S и СО2. Проведены результаты исследования особенностей одновременного поглощения Н2S и СО2 водным раствором NaOH. С последующим анализом и подборам основных параметров процесса извлечения Н2S. При одновременной абсорбции Н2S и СО2установлено, что химическая емкость поглотительного раствора по отношению к Н2S снижается. Рассчитаны константы скорости и концентрации при поглощении Н2S и СО2.
Держатели документа:
ЗКГУ
Доп.точки доступа:
Kaldybayeva, Botagoz M.
Khussanov, Alisher E.
Abilmagzhanov, Arlan Zh.
Boldyryev, Stanislav

22.18
У 69

Урматова, А. Н.
    Применение принципа гидродинамического установления ламинарного движения газов в каналах на основе уравнений навье-стокса [Текст] / А. Н. Урматова // Новости науки Казахстана. - 2019. - №4. - С. 22-33
ББК 22.18

Рубрики: Математическая кибернетика

Кл.слова (ненормированные):
уравнения Навье-Стокса -- уравнения Рейнольдса -- течение Пуазейля -- ламинарный режим -- ламинарное движение газов
Аннотация: В колонных тепло- и массообменных установках в качестве насадочного элемента выходят пластины, цилиндры, сферы и другие тела. Газ или жидкость, поступающие на переработку в этих устройствах, проходит многоступенчатое взаимодействие как между собой, так и с границами каналов и насадок. Поэтому возникает проблема решения соответствующих модулирующих уравнений, сочетания числовых схем их решений. В этом случае особую актуальность приобретает вопрос устойчивости уравнений Навье-Стокса в решении переменных Гельмгольца, отражающий законы сохранения фаз и движения непрерывности, которые являются физически удобными и комфортными для отражения динамических функций в многоступенчатом канале. Таким образом, начиная с какой-либо стадии связи, распространение динамических характеристик прекращает изменение. Для решения задачи можно получить практическое заключение. Так при доказательстве того, что движение газа будет установлено после определенной стадии n канала, в дальнейшем не решится соответствующее уравнение, и можно считать, что распределение будет одинаковым, начиная со стадии n+1. Применение такого эффекта позволяет экономить расчетную работу, особенно для длинных многоступенчатых каналов сложной формы.
Держатели документа:
ЗКГУ

Урматова, А.Н. Применение принципа гидродинамического установления ламинарного движения газов в каналах на основе уравнений навье-стокса [Текст] / А. Н. Урматова // Новости науки Казахстана. - 2019. - №4.- С.22-33

6.

Урматова, А.Н. Применение принципа гидродинамического установления ламинарного движения газов в каналах на основе уравнений навье-стокса [Текст] / А. Н. Урматова // Новости науки Казахстана. - 2019. - №4.- С.22-33


22.18
У 69

Урматова, А. Н.
    Применение принципа гидродинамического установления ламинарного движения газов в каналах на основе уравнений навье-стокса [Текст] / А. Н. Урматова // Новости науки Казахстана. - 2019. - №4. - С. 22-33
ББК 22.18

Рубрики: Математическая кибернетика

Кл.слова (ненормированные):
уравнения Навье-Стокса -- уравнения Рейнольдса -- течение Пуазейля -- ламинарный режим -- ламинарное движение газов
Аннотация: В колонных тепло- и массообменных установках в качестве насадочного элемента выходят пластины, цилиндры, сферы и другие тела. Газ или жидкость, поступающие на переработку в этих устройствах, проходит многоступенчатое взаимодействие как между собой, так и с границами каналов и насадок. Поэтому возникает проблема решения соответствующих модулирующих уравнений, сочетания числовых схем их решений. В этом случае особую актуальность приобретает вопрос устойчивости уравнений Навье-Стокса в решении переменных Гельмгольца, отражающий законы сохранения фаз и движения непрерывности, которые являются физически удобными и комфортными для отражения динамических функций в многоступенчатом канале. Таким образом, начиная с какой-либо стадии связи, распространение динамических характеристик прекращает изменение. Для решения задачи можно получить практическое заключение. Так при доказательстве того, что движение газа будет установлено после определенной стадии n канала, в дальнейшем не решится соответствующее уравнение, и можно считать, что распределение будет одинаковым, начиная со стадии n+1. Применение такого эффекта позволяет экономить расчетную работу, особенно для длинных многоступенчатых каналов сложной формы.
Держатели документа:
ЗКГУ


Муратов, А.
    Моделирование конвективного тепло- и массообмена в гетерогенных системах с химическими превращениями / А. Муратов // Поиск.Сер.ест.наук. - 2001. - #4,5.-С.169-176.

Рубрики: Математика--РК

Кл.слова (ненормированные):
Математическое моделирование -- Тепло -- Химические аппараты

Муратов, А. Моделирование конвективного тепло- и массообмена в гетерогенных системах с химическими превращениями [Текст] / А. Муратов // Поиск.Сер.ест.наук. - 2001. - #4,5.-С.169-176.

7.

Муратов, А. Моделирование конвективного тепло- и массообмена в гетерогенных системах с химическими превращениями [Текст] / А. Муратов // Поиск.Сер.ест.наук. - 2001. - #4,5.-С.169-176.



Муратов, А.
    Моделирование конвективного тепло- и массообмена в гетерогенных системах с химическими превращениями / А. Муратов // Поиск.Сер.ест.наук. - 2001. - #4,5.-С.169-176.

Рубрики: Математика--РК

Кл.слова (ненормированные):
Математическое моделирование -- Тепло -- Химические аппараты

Страница 1, Результатов: 7

 

Все поступления за 
Или выберите интересующий месяц